Revision: 5 Permits: BNR21-0604. R5

Bellingham MARINE®

January 13, 2023

Roshanak Amirazizi P.E. Civil Engineer OC Development Services / Building and Safety Orange County, CA

RE: BNR21-0604 Dana Point Harbor, 80 ft. Gangway Deferred Submittal

Dear Roshanak,

Please find the attached revised drawings and calculations for the 80' aluminum gangway ramps to be used in the Dana Point Harbor Revitalization Project (permit number BNR21-0604). The drawings and calculations are dated 1/13/2023 and 1/4/2023 respectively.

The gangways are a manufactured product from Topper Industries and have been engineered and sealed by Grantham Engineering. As Engineer-of-Record for the marina portion of the redevelopment, I have reviewed the drawings and calculations for general conformance with the project requirements. This includes review of the attachment of the gangways to the existing seawall.

Sincerely,

Bellingham Marine Engineering

Craig S. Funston, P.E., S.E.

Attachments: Topper 80' Gangway Drawing Topper 80' Gangway Calculation Set

Revision: 5 Permits: BNR21-0604. R5

STRUCTURAL CALCULATIONS FOR

5FT X 80FT GANGWAY

AT

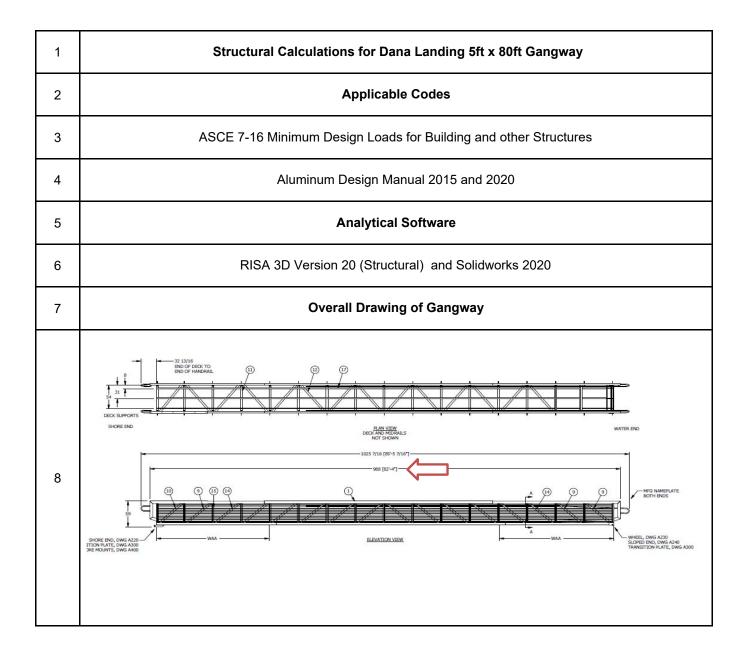
DANA POINT MARINA

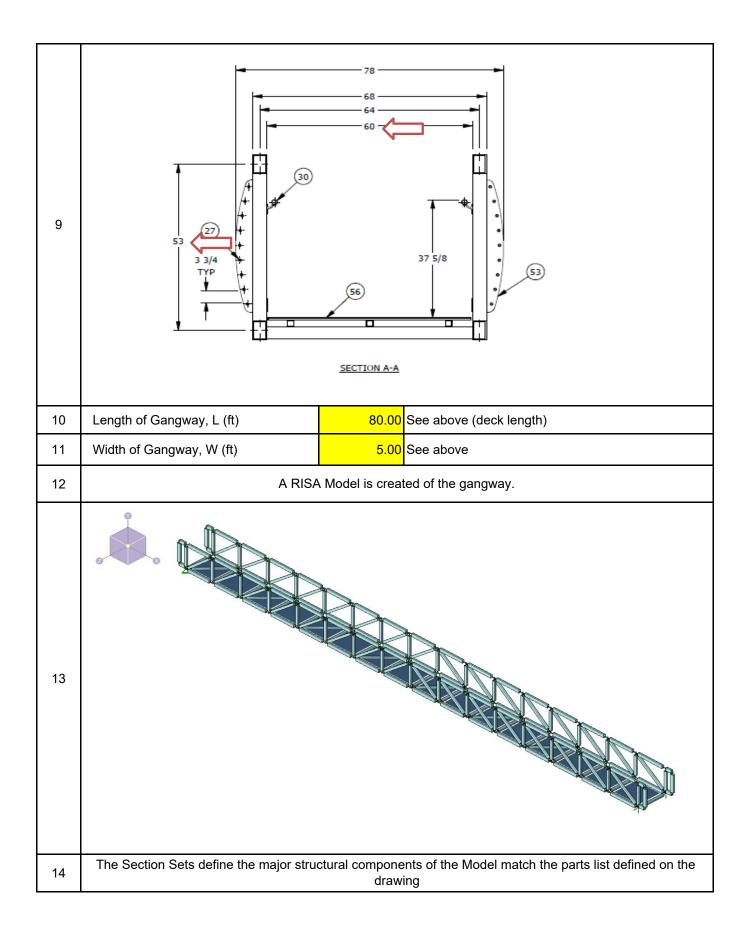
	BELLINGHAM MARINE INDUSTRIES, INC.
Х	NO EXCEPTIONS TAKEN
	REVISE AND RESUBMIT (RAR)

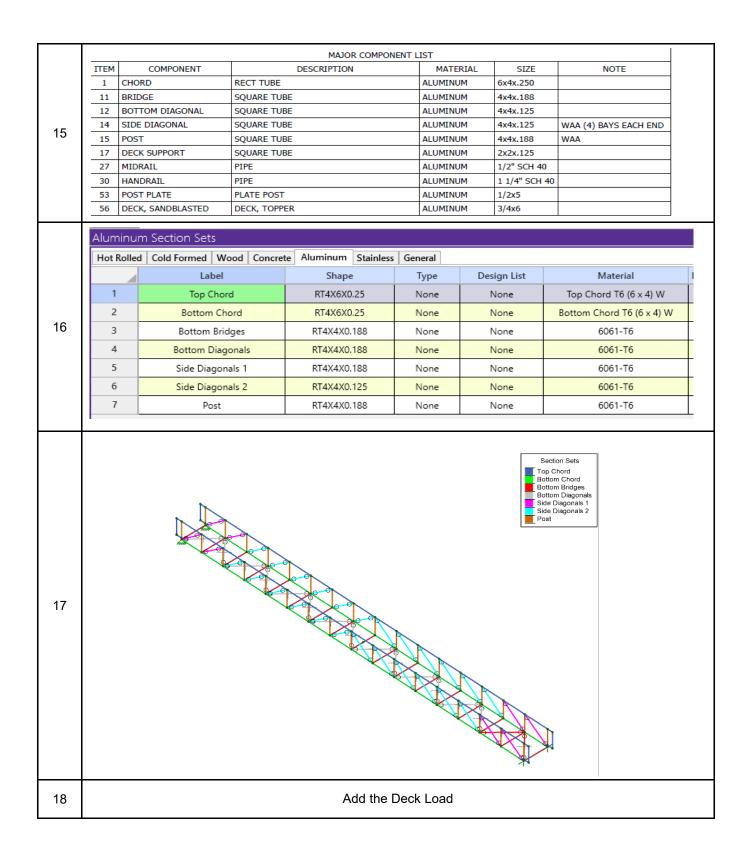
OTHER:

REVIEW IS ONLY FOR GENERAL CONFORMANCE WITH THE DESIGN CONCEPT OF THE PROJECT AND GENERAL COMPLIANCE WITH THE INFORMATION GIVEN IN THE CONTRACT DOCUMENTS, ANY ACTION SHOWN IS SUBJECT TO THE REQUIREMENTS OF THE PLANS AND SPECIFICATIONS, CONTRACTOR IS RESPONSIBLE FOR DIMENSIONS WHICH SHALL BE CONFIRMED AND CORRELATED AT THE JOB SITE; ENGINEERING; FABRICATION PROCESSES AND TECHNIQUES OF CONSTRUCTION; COORDINATION OF THEIR WORK WITH THAT OF ALL OTHER TRADES AND THE SATISFACTORY PERFORMANCE OF THEIR WORK. Craig Funston P.E., S.E.

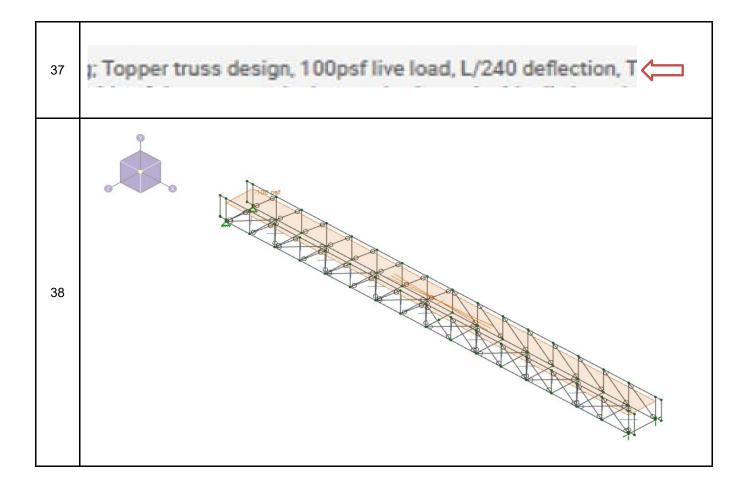
01/13/2023

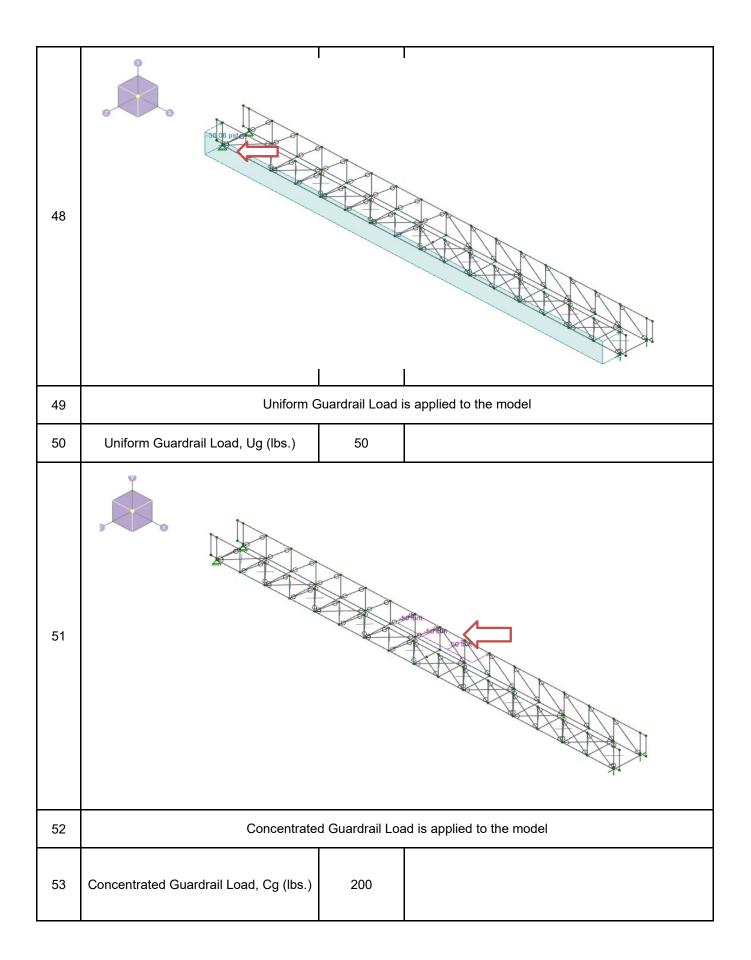

January 4, 2023

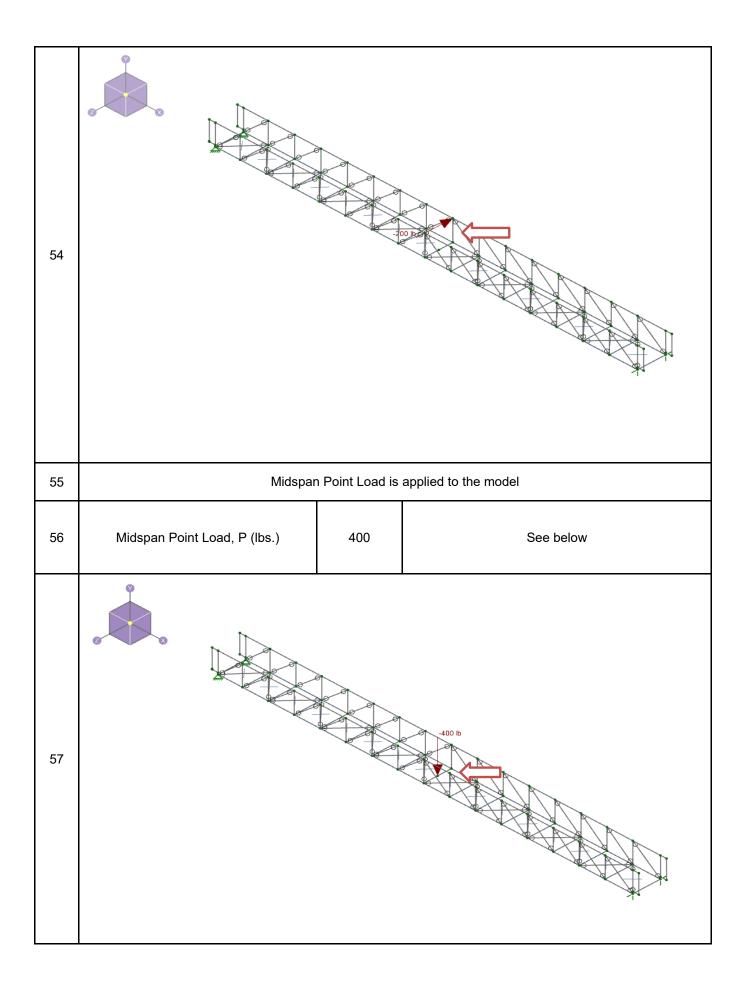

Prepared By:


Grantham Engineering, Inc. 7807 Hillandale Drive San Diego, CA 92120 (619) 994-0748

Civil • Mechanical • Marine

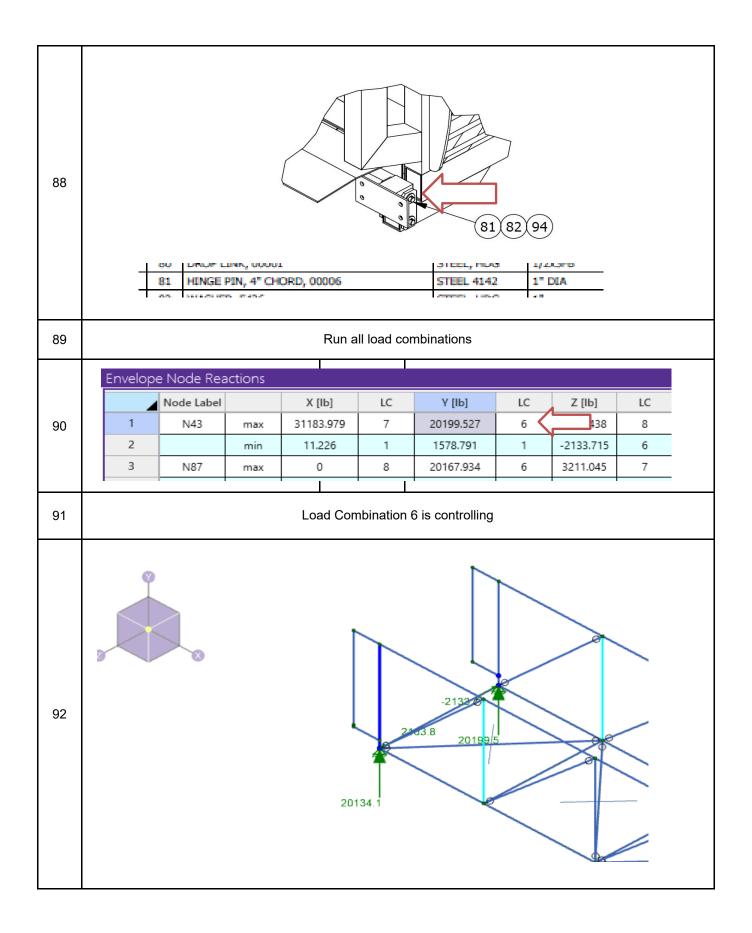





				-,
	DECK, TOPPER		ALUMINUM	3/4x6
	∃ Plate			
19	Materia		Deck Gen 🔻	
	Thickne	ess, in	0.125	
				ľ
20				
21	Run the Load Combinat	ion to determin	e the dead weight of t	he gangway model.
22	1 Self Weight	Y Y	DL	1
23	Totals: 0	434	16.004	
24	Model Weight, MW (lbs.)	434	l <mark>6</mark> See above	
25	Dead Load of Gangway, DL (lbs.):	617	⁷¹ See below	

26	GANGWAY APPROX SHIPPING WT = 6171 LBS (NOT INCLUDING SHORE MOUNTS) (2) SHORE MOUNTS APPROX WT = 44 LBS							
27	Difference, D (lbs) 1825 DL - MW							
28	Average Deadload added to model, ADL (psf)	4.56		D / (L x W)				
29								
30	Run Dead Load Again to confirr	m the model w	eight approximates the	e Gangway Dead Load				
31	1 Totals:	0	6291.604	0				
32	Model Weight, MW (lbs.)	629 ²	See above					
33	Dead Load of Gangway, DL (lbs.):	617	See below					
34	Weight Difference Ratio, R	0.98	DL/M	W approx. 1 OK				
35		Loading the	RISA Model					
36	Uniform Live Load, LL (psf)	100		See above				

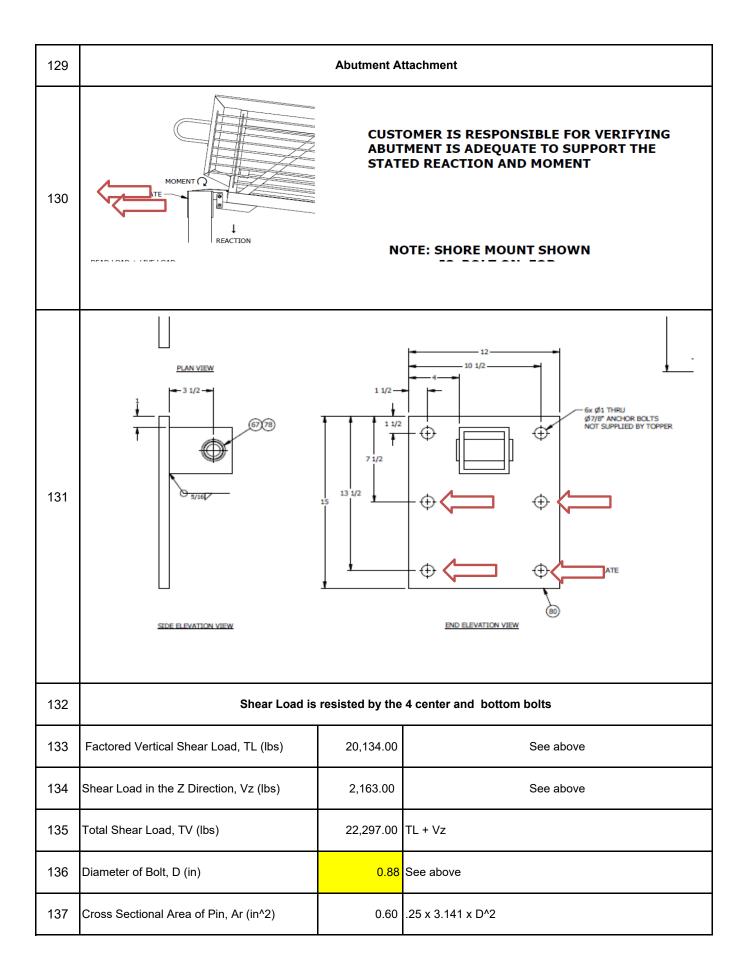
39	Wind Loads:							
40	Basic Wind Speed, V (mph)	See below						
41	Search by Address Search B Dana Point, CA, USA Coordinates: 33.4672256, -117 Wind Strong Wind Strong Print these results - ASCE 7-16 MRI 10-Year MRI 25-Year MRI 50-Year MRI 50-Year Risk Category I Risk Category I	N 🔪						
42	Wind Directionality factor, Kd	0.85	Section 26.6-1					
43	Exposure Category	D						
44	Gust effect factor, G	0.85	per Section 26.9.1					
45	Cf	1.8	Figure 29.4-2					
46	e	0.27	Figure 29.4-2					
47	Wind Pressure, q (lbs./ft^2)	36.06	0.00256 x kz x kzt x Kd x Ws^2 x Cf, Kz = .85, Kzt = 1.2, Kd =.75 Use in RISA analysis					



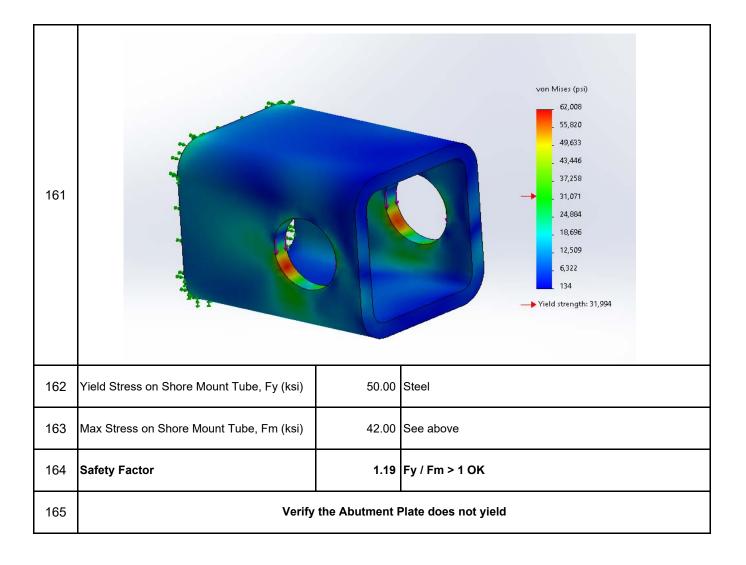
65		B.23 psf								
66	Define Basic Case	es. The -1 in the	Y-gravity	accoun	ts for the	e self we	eight of	the mem	bers	
67	Basic Load Cases BLC Description 1 Dead Load 2 Live Load 3 Wind Load 4 Utillity Load 5 BLC 1 Transient Area 6 Concentrated Handra 7 Uniform Handrail 8 9 10 Mid Span Point Load	DL LL WL OL4 Loads iil Load OL2 .oad OL1 None None		Y Gravity -1 	Z Gravity A A A A A A A A A A A A A	Nodal	Point	Distributed		lember) 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
68		Def	ine Load	Combir	nations					
69	Load Combinations Combinations Design LC Generator RSA Scaling Factor Description 1 1 Dead Load 2 Concentrated handrail load 3 handrail uniform load 4 Service 5 Load Combination 1 6 Load Combination 2 7 Load Combination 4 8 Load Combination 6	tor Solve P-Delta V Y V Y V Y V Y V Y V Y V Y V Y	SRSS BBI DD DD DD DD DD DD DD DD DD DD DD	L 1 L 1 L 1 L 1 L 14 L 1.4 L 1.2 L 1.2	er BLC 0L2 0L1 1L1 1L1 1L1 1L1 1L1 1L1 1L1 1L1 1L1	Factor 1.6 1.6 1.6 1 1.6 1 1.6 1 1 1	BLC OL3 OL3 OL3 LL	Factor Image: Constraint of the second	BLC 0 0L4 0 0L4 0 0L4 0 0L4 0 0L4 0 0L4 0	Factor 1.2 1.2 1.2 1.4 1.4 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2

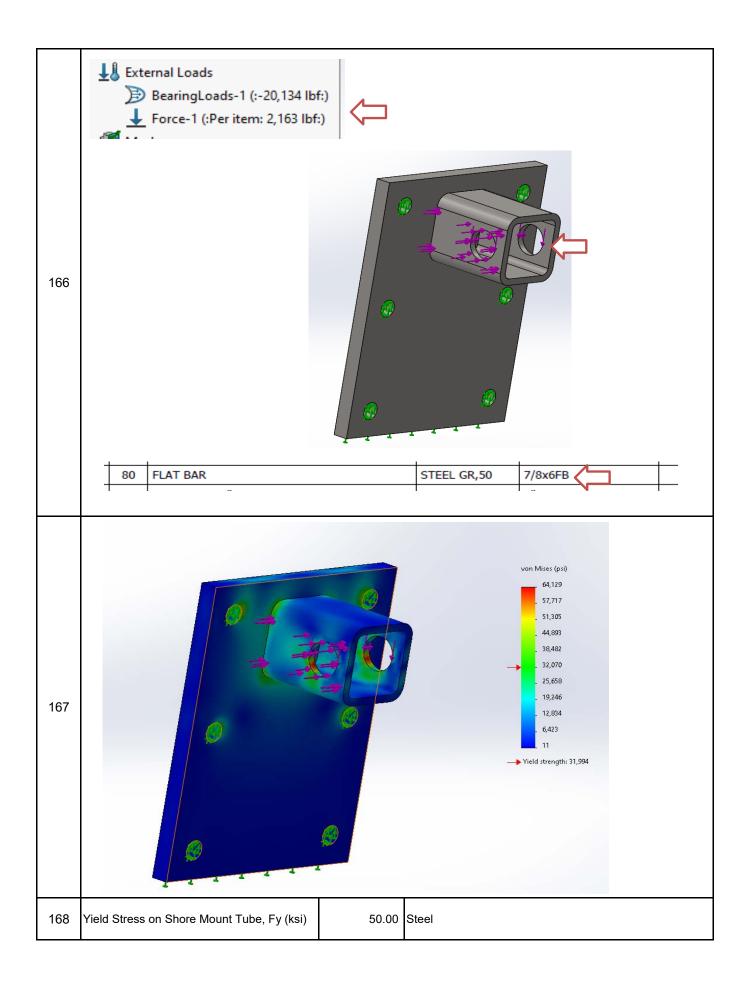
70	Deflection Analysis									
71	Verify Codes									
72	GENERAL STRUCTURAL NOTES CONFORMS TO 2015 AND 2020 ADM AND 2019 CA BUILDING CODE STANDARDS (TITLE 24) EFFECTIVE 1-1-19.									
	Model Settings ? ×									
	Solution Axis Codes Concrete Hot Rolled Steel: AISC 14th (360-10): ASD									
	Stiffness Adjustment: Yes (Iterative)									
	Seismic Detailing: AISC 341-10 and AISC 358-10									
	Connections: AISC 14th (360-10): ASD									
73	Cold Formed Steel: AISI S100-12: ASD •									
	CFS Walls: None -									
	Stiffness Adjustment: Yes (Iterative) 🔻									
	Wood: AWC NDS-15: ASD 🔹									
	Temperature: < 100F 🔻									
	Concrete: ACI 318-14 🔹									
	Masonry: ACI 530-13: ASD 🔹									
	Aluminum: AA ADM1-15: LRFD									
74	Run the Service Load Combinations to determine the largest deflection									
	Load Combinations Combinations Design									
	LC Generator RSA Scaling Factor									
	Description Solve P-Delta SRSS BLC Factor BLC Factor BLC Factor BLC Factor									
	1 Dead Load Image: V V DL 1 Image: V									
75	3 handrail uniform load Image: Concentrate handrail to ad Image: Concenthandrail to ad <thimage: ad<="" concentrate="" handrail="" th="" to=""></thimage:>									
	4 Service V Y DL 1 LL 1 OL4 1									
	5 Load Combination 1 Y DL 1.4 OL4 1.4									
	6 Load Combination 2 V P DL 1.2 LL 1.6 OL4 1.2 7 Load Combination 4 V Y DL 1.2 WL 1 LL 0.5 OL4 1.2									
	V Load Combination 4 V V DL 1.2 VVL I LL 0.5 OL4 1.2 8 Load Combination 6 V Y DL 0.9 WL 1 OL4 0.9									

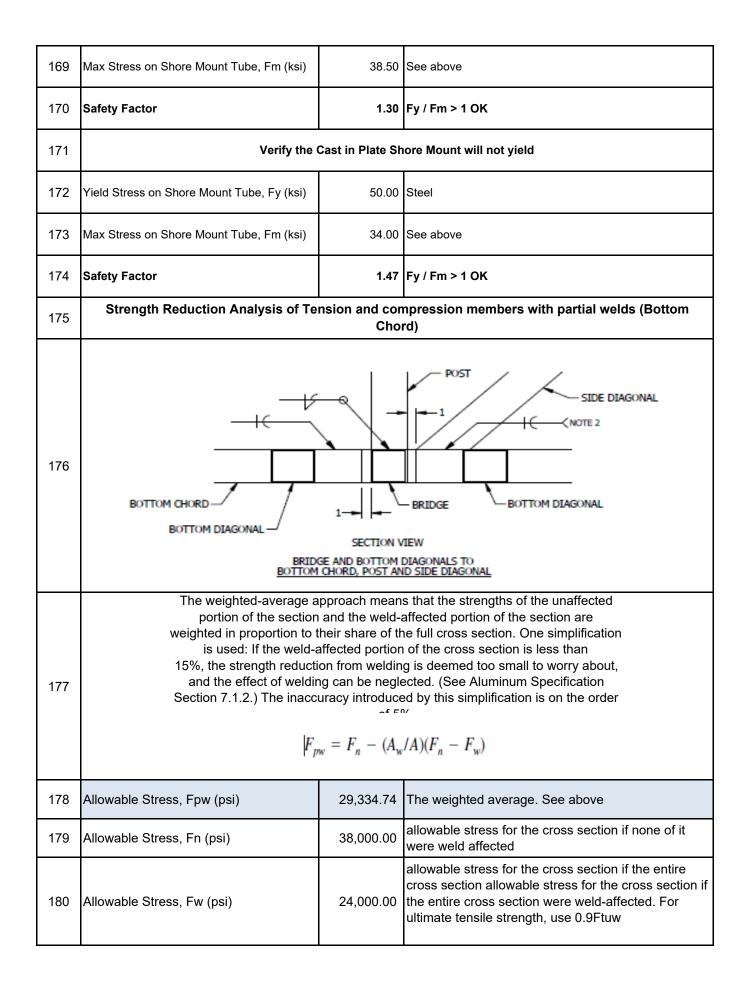
76	For 100 psf deflection							
77	Node Displacements (By	Combination)						
	LC Node La	bel X [in] Y	Y [in] Z [in] X Rotation [rad]					
	1 4 N103	0.228 -3	-3.942 06 -3.508e-4					
	2 4 N122	0.228 -3	-3.903 0 1.957e-3					
	3 4 N68		-3.898 0.105 1.951e-3					
	4 4 N121	0.228 -3	-3.885 -0.011 -2.512e-3					
78								
80	Max Deflection, Dm (in)	3.920) See above					
81	Safety Factor	1.02	2 Dam/Dm > 1 OK					
82	F	Run the all Load	d Combinations.					
83	○ Sing	ion Choices le Load Combi 4: Service elope (Only) of	? × pinations:					

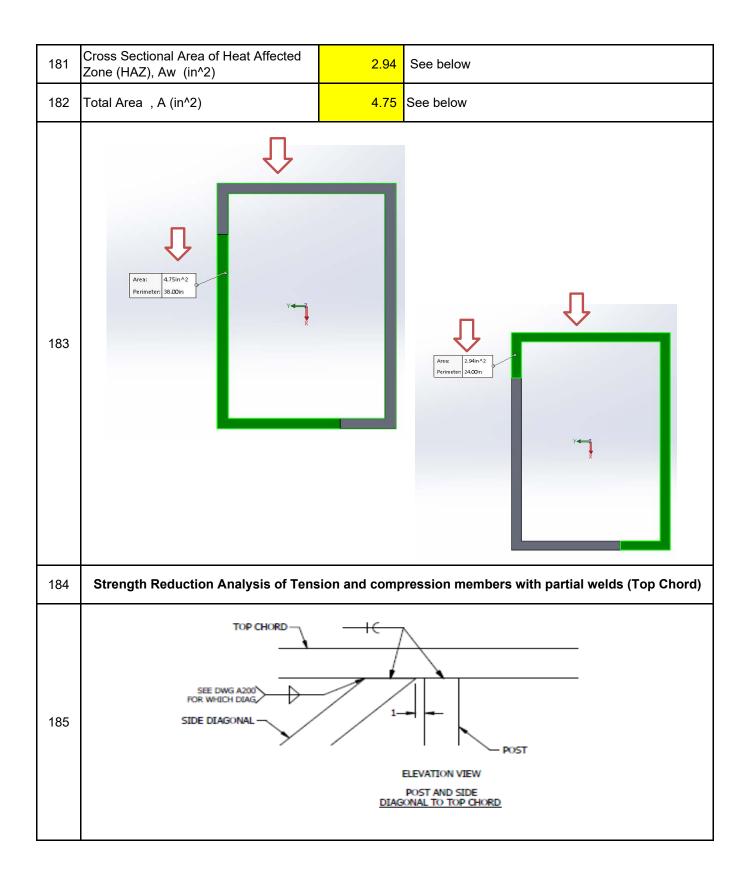

84										Code Check (Env) No Calc > 1.0 .90-1.0 .7590 .5075 050
	· · · · · · · · · · · · · · · · · · ·		/1-15: LRFD - Bu Id Formed Steel W	ilding Alum		ide Check Concrete Co		inum Stai	nless	
	The Rolle	Member	Shape	Code Check		LC	Shear Check	Loc[in]	Dir	LC
	1	M52	RT4X6X0.25	0.834	$\overline{\mathbf{h}}$	6	0.009	0	z	3
85	2	M51	RT4X6X0.25	0.83	0	6	0.031	0	z	3
	3	M43	RT4X6X0.25	0.824	60	6	0.004	60	z	7
	4	M42A	RT4X6X0.25	0.82	0	6	0.014	0	z	7
			1	1	I	I	1		1	1 1
86	The code check values are the UC Max and Shear UC shown on the bridge. The colors represent a factored ratio of actual to allowable load for LFRD based on the provisions of the Aluminum Design Manual 2015. Ratios greater than 1 are shown in RED; therefore, any member in RED is not acceptable.									
87				Abutme	nt Pin Hir	nge Analy	sis			

	l	Node Re	actions (I	By Combin	ation)					
	LC Node L		Node Label	X [lb]			Y [lb]	Z [lb]		
93		1	6	N1	-4	153.714		20134.146	2163.776	
		2	6	N43	4	53.714		20199.527	-2133.715	
94		ctored Ver utment tub				20,1	34	See above		
95		ctored Hor utment tub		ad on each s)		2 ,1	63	See above		
96	Diameter of Pin, Rd (in)				1	.00	See below			
97	74 HINGE PIN, 4" CHORD, 00006				00006		STE	EL 4142	1" DIA	
98	Crc	oss Sectio	nal Area c	f Pin, Ar (in	^2)	1	.57	1/4 x 3.141 x Rd^2 x 2 surfaces		
99	Ulti	mate Yiel	d Strength	of, Fy (psi)		70,000	.00	4142 Steel		
100	She	ear streng	th of Pin N	/laterial, Vr ((psi)	40,390	.00	0.577 x Fy		
101	She	ear Streng	th of Pin,	Vrr (lbs)		63,432	.50	Vr x Ar		
102	Shear Load on each Pin, Ll (lbs)		20,1	34	See above					
103	Safety Factor			3	.15	Vrr/LI OK				
104					Shore	e Mount Ar	naly	sis (Flush Mo	punt)	

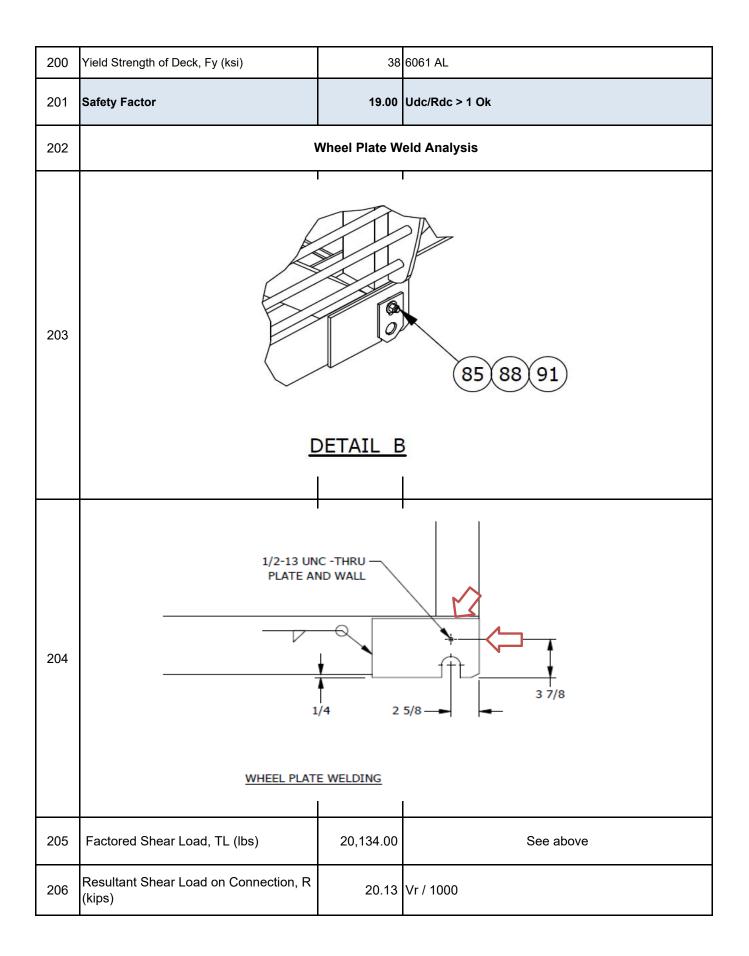

105	DELEVATION VIEW	1 1/2 + + + + + + + + + + + + + + + + + + +					
106		Vertical Loa	d on Weld				
107	Shear Load in the Y direction on each Pin, Lly (lbs.)	20,134	See above				
108	Resultant Shear Load on Connection, R (kips)	20.13	Vr / 1000				
109	Length of Weld per connection, Lw (in)	8.00	4" x 2 sides Vertical sides only				
110	Shear Load per inch of Weld, Vn (kips/in)	2.52	Vxy / Lw				
111	Strength of a Fillet Weld, Fn (ksi)	65					
112	Weld size in 16ths of an inch, D (in)	5.000	5/16" fillet				
113	Shear Capacity of FILLET Weld, Vc (kips/in)	6.46	0.6 x Fn x 2^.6/2 x D/16 x 0.75 (LFRD) Per Steel Manual Section 8-8				
114	Safety factor	2.57	Vc / Vn >>1				
115	Moment Load on top of Tab						

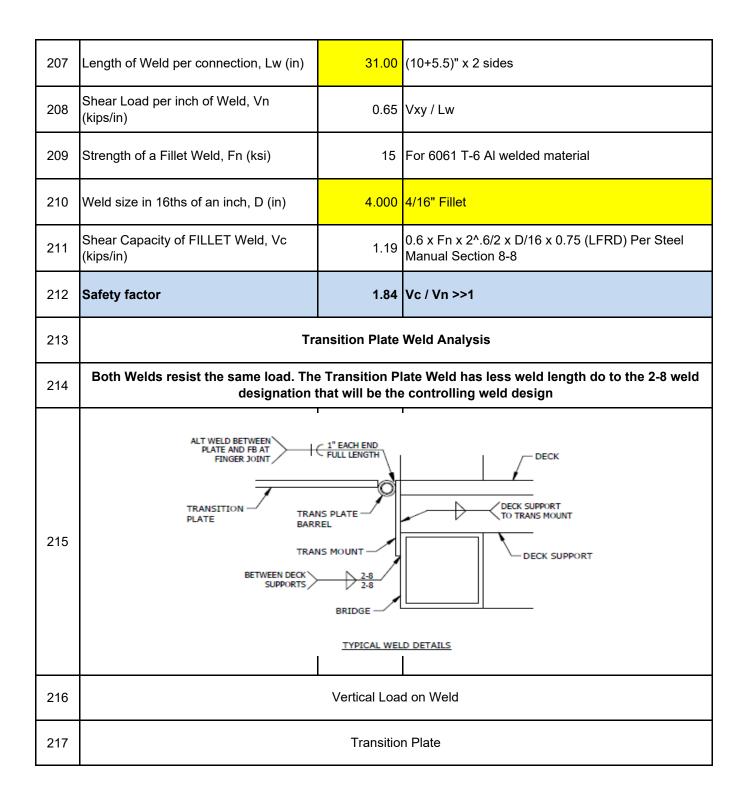

116	ELEVATION VIEW	1 1/2	The elevation view
117	Factored Shear Load, TL (lbs)	20,134.00	See above
118	Moment Arm from pin center to weld point, Ma (in)	3.50	See above
119	Total Moment Load on tabs, M (lbs-in)	70,469.00	TL x Ma
120	Depth of shore mount, Tt (in)	4.00	See above
121	Moment Arm weld line, Maw (in)	4.00	Tt
122	Strength of a Fillet Weld, Fn (ksi)	65	
123	Weld size in 16ths of an inch, D (in)	5.000	5/16" fillet
124	Tension Capacity of FILLET Weld, Vc (kips/in)	6.46	0.6 x Fn x 2^.6/2 x D/16 x 0.75 (LFRD) Per Steel Manual Section 8-8
125	Length of Weld per connection, Lw (in)	4.00	Top side only
126	Tension Capacity of Weld, Tc (lbs)	25,853.59	Lw x Vs x 1000
127	Moment Capacity of Weld, Mc (lbs-in)	103,414.37	Tc x Maw
128	Safety factor	1.47	Mc / M >1 OK

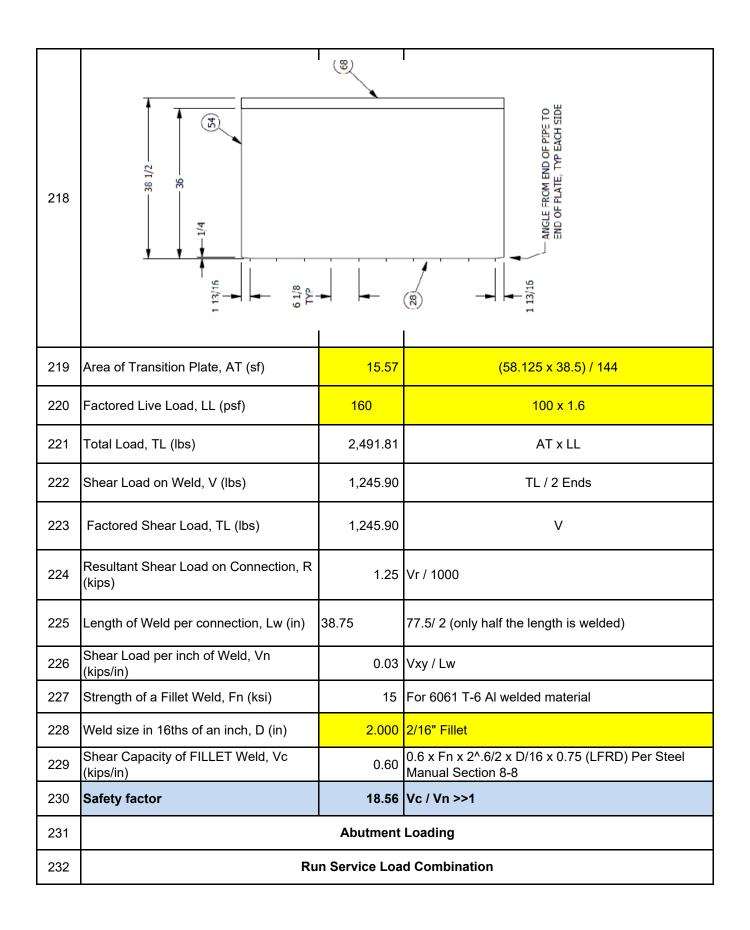


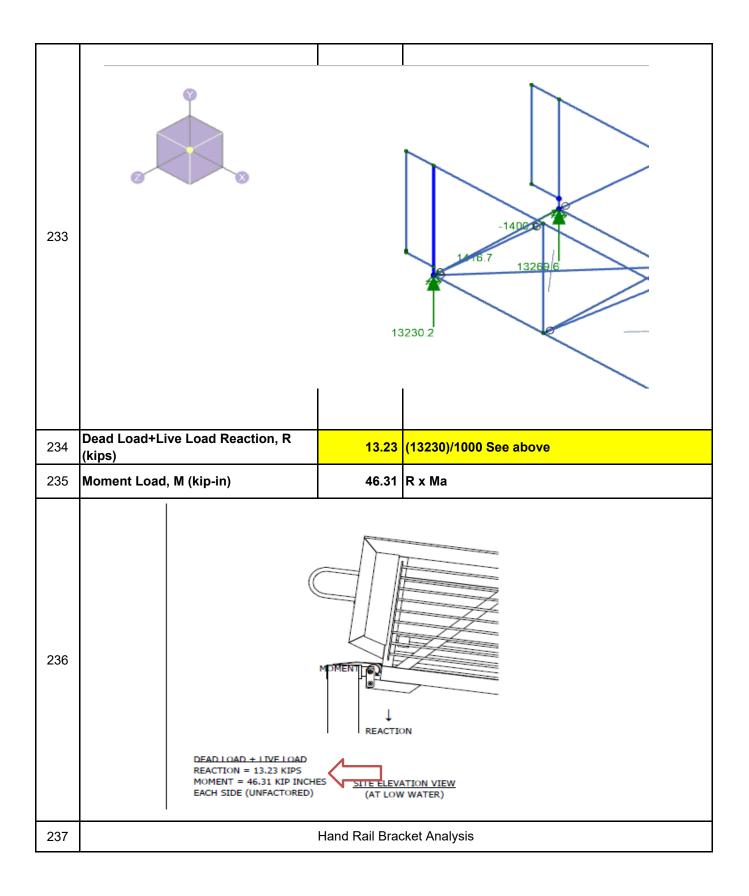

138	Yield Strength of, Fy (psi)	42,100.00	316 SS
139	Tensile Strength, Yield	<u>290</u>	<u>0 MPa</u> 42100 psi
140	Shear strength of Bolt Material, Vr (psi)	24,291.70	0.577 x Fy
141	Shear Strength of Bolt, Vrr (lbs)	10,953.26	Vr x Ar x .75 (strength factor for shear)
142	Shear Load on each Bolt, Ll (lbs)	5,034	TV / 4 bolts
143	Safety Factor	2.18	Vrr/LI OK
144	Moment	Load is resisted	d by the two Top bolts
145	Factored Shear Load, TL (lbs)	20,134.00	See above
146	Moment Arm from pin center to weld point, Ma (in)	3.00	See above
147	Total Moment Load on both tabs, M (lbs-in)	60,402.00	TL x Ma
148	PLAN VIEW PLAN VIEW	1 1/2	The second secon
149	Diameter of Bolt, D (in)	0.88	See above
150	Cross Sectional Area of Pin, Ar (in^2)	0.60	.25 x 3.141 x D^2
151	Yield Strength of, Fy (psi)	42,100.00	316 SS

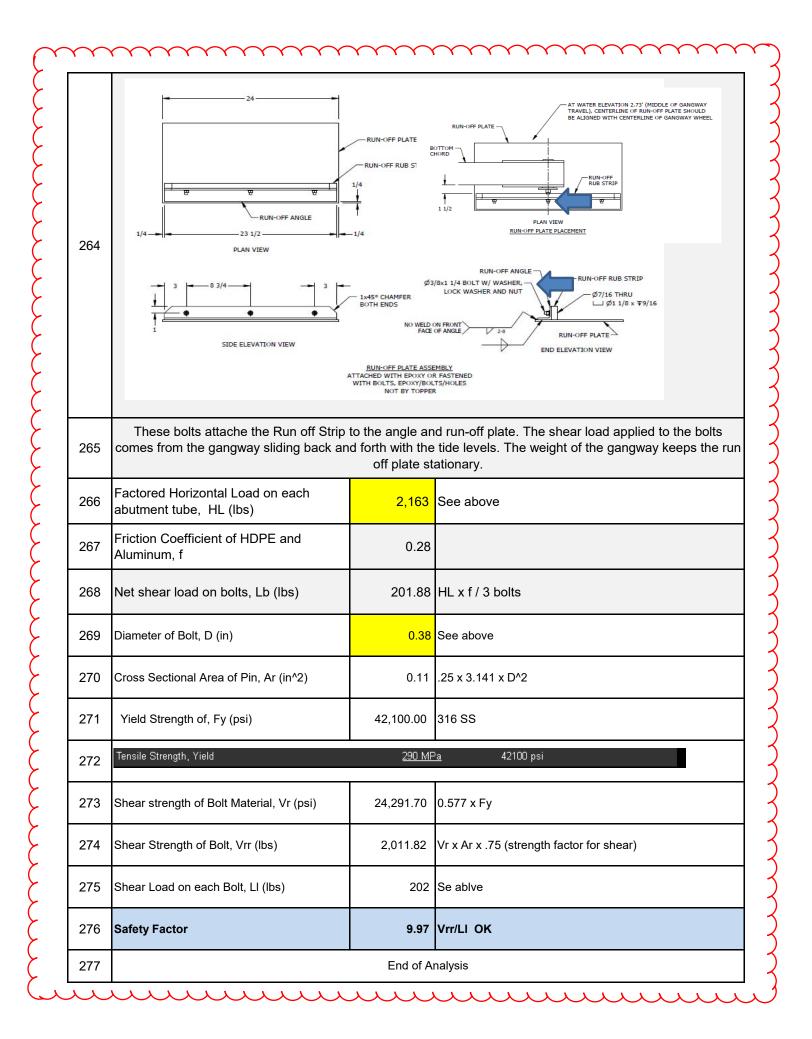
152	Tensile Strength, Yield	<u>290 MF</u>	P <u>a</u> 42100 psi
153	Tensile Strength of Bolt, Tb (lbs)	22,779.73	Vr x Ar x .9 (strength reduction factor for Tension)
154	Distance from center of middle bolts to center of bolt, Db (in)	6.00	See above. 7.5 - 1.5
155	Moment Capacity of Bolt, Mc (lbs-in)	273,357	Tb x Db x 2 bolts
156	Safety Factor	4.53	MC / M >1 OK
157		Check Stub Mat	terial Yielding
158	Factored Vertical Shear Load, TL (lbs)	20,134.00	See above
159	Factored Horizontal Load on each abutment tube, HL (lbs)	2,163	See above
160	 BearingLoads-1 (:-10,067 lbf:) BearingLoads-2 (:-10,067 lbf:) Force-1 (:Per item: 2,163 lbf:) 		








186	The weighted-average approach means that the strengths of the unaffected portion of the section and the weld-affected portion of the section are weighted in proportion to their share of the full cross section. One simplification is used: If the weld-affected portion of the cross section is less than 15%, the strength reduction from welding is deemed too small to worry about, and the effect of welding can be neglected. (See Aluminum Specification Section 7.1.2.) The inaccuracy introduced by this simplification is on the order of 5%. $ F_{pw} = F_n - (A_w/A)(F_n - F_w)$		
187	Allowable Stress, Fpw (psi)	33,578.95	The weighted average. See above
188	Allowable Stress, Fn (psi)	38,000.00	allowable stress for the cross section if none of it were weld affected
189	Allowable Stress, Fw (psi)	24,000.00	allowable stress for the cross section if the entire cross section allowable stress for the cross section if the entire cross section were weld-affected. For ultimate tensile strength, use 0.9Ftuw
190	Cross Sectional Area of Heat Affected Zone (HAZ), Aw (in^2)	1.50	See below
191	Total Area , A (in^2)	4.75	See below
192	Area: 1.50in^2 Perimeter: 12.50in	Ŷ	



238	HANDRAIL 3/16 3/16 HANDRAIL BRACKET INSIDE ELEVATION	TYPICAL HAN	HANDRAIL 3/16 BND ELEVATION VIEW DRAIL ATTACHMENT
239	Spacing between brackets, S (ft) Vertical Load on Handrail Bracket, VI		See drawing
240	(lbs) Resultant Shear Load on Connection, R	250	S x 50 plf
241	(kips)	0.25	Vr / 1000
242	Length of Weld per connection, Lw (in)	1.00	Width of Bracket
243	HANDRAIL 3/16 3/16 HANDRAIL BRACKET INSIDE ELEVATION	POST HANDRU 3/3 3/1 DN VIEW <u>TYPICAL HANDRAIL A</u>	END ELEVATION VIEW
244	Shear Load per inch of Weld, Vn (kips/in)	0.25	Vxy / Lw
245	Strength of a Fillet Weld, Fn (ksi)	15	For 6061 T6 AL
246	Weld size in 16ths of an inch, D (in)	3.000	3/16" fillet
247	Shear Capacity of FILLET Weld, Vc (kips/in)	0.89	0.6 x Fn x 2^.6/2 x D/16 x 0.75 (LFRD) Per Steel Manual Section 8-8
248	Safety factor	3.58	Vc / Vn >>1
249	Moment Load on Top Weld		
250	Vertical Load on Handrail Bracket, VI (Ibs)	250.00	See above
251	Moment Arm from bracket to center of bracket support, Ma (in)	2.31	1 11/16 + 1.25/2 See above

252	942 .942 .311 err .311 err .311 err .311 err .311 err .311 err .311 err .311 err .311 err .31555 R1.285 R.373 .188±.015 .188±.015 .188±.015 .188±.015 .188±.015		
253	Total Moment Load on Bracket, M (lbs- in)	578.13	TL x Ma
254	Depth of bracket, Tt (in)	2.86	See above
255	Moment Arm weld line, Maw (in)	2.86	Tt
256	Strength of a Fillet Weld, Fn (ksi)	15	For 6061 T6 AL
257	Weld size in 16ths of an inch, D (in)	3.000	3/16" fillet
258	Tension Capacity of FILLET Weld, Vc (kips/in)	0.89	0.6 x Fn x 2^.6/2 x D/16 x 0.75 (LFRD) Per Steel Manual Section 8-8
259	Length of Weld per connection, Lw (in)	1.00	Width of Bracket
260	Tension Capacity of Weld, Tc (lbs)	894.93	Lw x Vs x 1000
261	Moment Capacity of Weld, Mc (lbs-in)	2,562.19	Tc x Maw
262	Safety factor	4.43	Mc / M >1 OK
263	Run-off Plate Bolt Analysis		

Aluminum Gangway Design - Design Input/Summary All Calculations Per Aluminum Design Manual 2020

Truss Analysis

Loading

Live Load: LL =	100	psf	
Dead Load: DL =	15	psf	
Utility Load: UL =	9.42	psf	
Point Load (mid span): P =	400	lb	
Wind Load: WL =		mph	
LL Deflection Criteria: L/	240	$\Delta_{LL} =$	3.62 in
LL Deflection: L/	265		
Hand Rail Load	50	plf	
<u>Gangway Dimen</u>	<u>sions</u>		
C	00	Δ.	

Span: L =	80	ft
Width: w =	5	ft
Effective Width: w =	5.33	ft
Ctr. to Ctr. Chord Height: h =	53	in

Safety Factors

(From Sec. D.1, and Sec. F.1	- ADM 2020)
Ωu =	1.95
$\Omega_c =$	1.65

Material Properties

Alloy:	6061-T6	B221
Weld Filler:	5356	
Modulus of Elasticity: E =	1E+07	psi

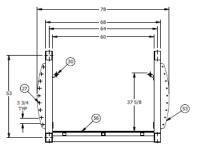
Illtimate Stresses

Outmate Stresses						
(From Table A4.3 - ADM 2020)						
$F_{tu} =$	38.00	ksi				
$F_{ty} =$	35.00	ksi				
(From Table A4.3 - ADM 2020)						
$F_{tuw} =$	24.00	ksi				
(From Table A.4.6 & J2.2 - ADM 2020) Filler 5356:						
F _{tuw} =	14.40	ksi				
.85*F _{tuy} =	12.24	ksi				
	$\begin{array}{l} ADM \ 2020) \\ F_{tu} = \\ F_{ty} = \\ ADM \ 2020) \\ F_{turw} = \\ \& \ J2.2 \ - \ ADM \ 20.5 \\ F_{turw} = \\ \end{array}$	$\begin{array}{l} ADM 2020) \\ F_{tu} = & 38.00 \\ F_{ty} = & 35.00 \\ ADM 2020) \\ F_{tuw} = & 24.00 \\ \& J2.2 - ADM 2020) \\ \\ F_{tuw} = & 14.40 \end{array}$				

Uniform Ld: $w_L = 1/2(LL^*w_E + DL^*w + UL^*w)$ 327.7 plf $w_L =$ End Reaction: $R = \frac{1}{2} (w_L * L + P)$ R =13.31 kips Maximum Moment: $M = 1/8 * w_L L^2 + 1/4 * PL$ 270.17 k-ft M =

(Analysis performed on one side truss of the gangway)

Chord Force: F = M/hF = 61.17 kips


Design Summary

Chords:	
Selected Member:	6x4x0.250
Stress Status:	Section Good
Deflection Status:	Meets Deflection Criteria

4x4x0.188
Section Good
Weld Good
Weld All Around (4) Bay
4x4x0.188
Section Good
Weld Good
5 ft.

Posts: Selected Member: 4x4x0.188 Top Chord Bracing: Section Good

Weld Status:	Weld Good
Combined Stress:	Section Good

SECTION A-A

						2
Topper Industries			Project:	5x80 Ga	angway Dar	na Pt
			Job#:		8115	
			Engineer:	NT	BG	
			Date:	No	vember-22	view 14 1 2 2 22)
	•	<u> </u>	• • • • • • • • • • • • • • • • • • • •	1.D. '		sion 14.1 2-2-22)
Alui	minui	<u>n Gangway D</u>		d Design		
_	-	<u>Chord M</u>		15	~1 1	
l	Jse	<u>6x4x0</u> .		op and Bottom	Chord	4
d (in) b (in)	t (in)	$A(in^2)$	$S_x(in^3)$	$I_x(in^4)$	r (in)	$J(in^4)$
6 4	0.25	4.75	7.82	23.5	1.61	24.5
<u>Top Chord Compr</u>	ession	<u>Check</u>	Elastic	c Buckling Stres	ss: Sec. B.5.	.6
(Use Vertical Posts to Brace	-					
Perimeter of Section: A =) in	Elastic Buc	kling Stress: M		
Weld Affected Perim.: $A_w =$	2	<mark>1</mark> in	. 11		15.76 k	
	1.0	N	Allov	wable Stress: F		
Chord K Factor: K =	1.2			F _p =	14.02 k	S1
Dist. Between Posts: $L_p =$	00) in	4110	wable Compres	sion Strass	
Compression In Coli	imns · Se	cE2	Allo	wuble Compres	<u>sion siress.</u>	-
<u>compression in con</u>	inins. Se	<u>c. n.2</u>	Chord Allow	able Stress =	14.02 k	si
$\lambda = KL_p/r$ $\lambda =$	44.72	2				
P			Top Chord A	ctual Stress: f _a	F/A	
$F_{w} = 9.1$	for	$\lambda \leq 21.8$		$f_a =$	12.88 k	si
$F_w = 0.00007 * \lambda^2 - 0.066 \lambda + 10.5$	for	$21.8 < \lambda < 133$				
$F_{\rm w}=51352/\lambda^2$	for	$\lambda \geq 133$				
Weld Affected: $F_w =$	7.69	ksi	Dema	nd/Capacity: D	$C = f_a / F_{pw}$	
$F_n = 21.2$	for	$\lambda \leq 17.8$		D/C =	0.9	Section Good
$F_n = 0.00047\lambda^2 - 0.232\lambda + 25.2$	for	$17.8 < \lambda < 66$				
$F_n = 51352/\lambda^2$	for	$\lambda \geq 66$				
Non-Weld Affected: $F_N =$	15.76	s ksi	<u>Bottor</u>	n Chord Ten	sion Che	<u>ck</u>
Column Allowable Stress: I	F = F	(1-A A) + F (A A)	Perimeter of	Section: A =	20 in	n
	<i>pw</i> 14.15		Weld Affected		6 in	
- pw						-
Compression In Column El	lements:	Sec. B.5.4.2	<u> </u>	<u>Axial Tension: S</u>	Sec. D.2	
$\lambda = b/t$ $\lambda =$	16.00)	Allowable	Yield Stress:	$P_{ty} = F_{ty} (A_g - A_w)$ 19.70 k	
$F_{\rm w} = 9.1$	for	<i>λ</i> ≤ 28.2	Allowable R	upture Stress P	$P_{nt} = F_{tu} (A_e - A_{ev})$	_{wz})+F _{tuw} A _{ewz}
$F_w = 12.0-0.105\lambda$	for	$28.2 < \lambda < 58$			17.34 k	/in
$F_w = 346/\lambda$	for	$\lambda \ge 58$				
Weld Affected: $F_w =$	9.1() ksi	<u>Al</u>	llowable Tensio	on Stress:	
$F_n = 21.2$	for	$\lambda \leq 20.8$				
$F_n = 27.3 - 0.291 \lambda$		$20.8 < \lambda < 33$	Bottom Chord Ac			
$F_n = 580/\lambda$	for	$\lambda \ge 33$		$f_a =$	12.88 k	si
Non-Weld Affected: $F_n =$	21.20) ksi	D	1/0 : -		
Element Allowable Streer 1			Dema	nd/Capacity: D D/C =		$n F_{ty}, F_{nt}$ Section Good
Element Allowable Stress: $F_{pw} =$	$F_{pw} = F_n ($ 18.78			D/C =	U. /4	Section Good
т _{рw} —	10.70	, 101				

Aluminum Gangway Design - Chord Design

Gangway Deflection Check

(Based on Top and Bottom Chord Section Properties)

Truss Moment of Inertia: $I=2[I+A(h/2)^2]$

6718 in⁴ I =

Live Load Deflection: $\Delta_{LL} = 5 w_L L^4 / 384 EI$

 $\Delta_{LL} = 3.62$ in L/ 265

Deflection Meets Criteria

Vertical Posts Bracing Top Chord

(Brace top chord of truss with (3) verticals to resist 2% of axial compression)

Vertical Post Member:		4x4x0.188			
b (in)	t (in)	$S_y(in^3)$	$I_y(in^4)$		
4	0.188	3.48	6.96		
d (in)	C_b	$A(in^2)$	L_b (in)		
4	1.3	2.87	49		

Perimeter of Section: A = **16** in Weld Affected Perim.: $A_w =$ 12 in

Compression In Beams: Sec. B.5.4.2

$\lambda = b/t$	λ=	21.3	
$F_w = F_w = 12.0-0.1$		for for	$\lambda \leq 28.2$ $28.2 < \lambda < 58$
$F_{w} = 34$	-6/λ	for	$\lambda \ge 58$
Weld Affected: H	$F_w =$	9.10	ksi
$F_n = 2$	1.2	for	$\lambda \leq 20.8$
$F_n = 27.3 - 0.2$	91 λ	for	$20.8 < \lambda < 33$
$F_n = 58$	30/λ	for	$\lambda \geq 33$
Non-Weld Affected: I	$F_n =$	21.11	ksi

Element Allowable Stress:	$F_{pw} = F_n (1 - A_w / A_f) + F_w (A_w / A_f)$
$F_{pw} =$	12.10 ksi

$\lambda = b/t$	$\lambda =$	21.28	
F_{w}	= 13.6 f	or	λ<13.6
$F_{w} = 16$ -	-0.065λ f	òr	<i>36.2≤λ≤123</i>
$F_w =$	$= 982/\lambda$ f	òr	
Weld Affecte	$d: F_w =$	13.60	ksi
F.	= 31.8 f	or	λ<33.1
11	51.0 1	01	$\lambda > 33.1$
$F_n = 40.5$ -			$\lambda < 33.1$ $33.1 < \lambda < 77$
	0.262λ f	or	

Element Allowable Stress: $F_{pw} = F_n (1 - A_w / A_f) + F_w (A_w / A_f)$ $F_{pw} = 18.15 \text{ ksi}$

Tension In Beams: Table 2-19 & 2-19W Sec. D.2a

Weld Affected Tension: $F_w =$ 9.10 ksi Non-Weld Affect Tens.: $F_n =$ 21.20 ksi

Allowable Tension Stress: $P = F_{ty} (A_g - A_{wz}) + F_{tyw} A_w$ $F_{nw} =$ 12.13 ksi

Allowable Bending & Combined Stress:

Allowable Bending Stress: $F_{pw} =$ 12.10 ksi

Max Bracing Mome	nt: M = 0	0.02Fh/3	3
Ν	/I =	21.61	k-in
Post Bending Stre	ess: $f_b =$	<i>M/S</i>	
1	$f_b =$	6.21	ksi
$D/C = f_b/F_p$		0.3	Section Good
-			x .
Combined Stress: <i>P_r</i>	$/P_c + M/N$	$M_r \le 1.0$	
Ι	$P_r =$	12.5	kips
	$P_{c} =$	60.8	kips
Ν	/I =	21.61	k-in
Ν	$\mathbf{f}_{\mathbf{r}} =$	63.16	k-in
Comb. Stre	ss=	0.5	Section Good

Topper Industries

Project:

4

<u>Job#:</u> Engineer: Date: 8115 BG November-22

(Version 14.1 2-2-22)

Aluminum Gangway Design - Chord Design

Vertical Post Weld to Chord

(Weld Top and Bottom of Post)

Allowable $V_w =$ 12.24 ksi Allowable $P_w =$ 12.24 ksi

End Reaction: $R_p = 0.02F$ $R_p = 1.22$ kip

A_w of Weld: $A_w = 2b$ $A_w = 7.50$ in S_w of Weld: $S_w = bd$ $S_w = 15.00$ in²

Shear Demand at Weld: $f_v = R_p / A_w$ $f_v = 0.16$ kip/in Tension Demand at Weld: $f_v = M / S_w$ $f_t = 1.44$ kip/in

Weld Thickness Required: $t_w = f_p / V_w + f_t / P_w$

 $t_w = 0.131$ in

Min Post/Chord Thickness = 0.188 in

Demand/Capacity: $D/C = t_w/t$ D/C = 0.70 Weld Good

Vertical Post to Chord for Combined Brace & Rail Load (Weld Bottom of Post for Brace & Handrail Load) $V_w =$ 12.24 ksi 12.24 ksi $P_w =$ $f_{p} =$ Shear: **0.66** kip $M_{p}=$ 31.30 k*in (handrail load @ height of rail+deck+deck support-verify) A_w of Weld: $A_w = 2b$ $A_w =$ 8.00 in S_w of Weld: $S_w = bd$ **16.00** in² $S_w =$ Shear Demand at Weld: $f_v = f_p / A_w$ $f_v =$ **0.08** kip/in Tension Demand at Weld: $f_t = M_p / S_w$ $f_t =$ **1.96** kip/in Weld Thickness Required: $t_w = f_p / V_w + f_t / P_w$ $t_w =$ 0.167 in Min Post/Chord Thickness = 0.188 in

> Demand/Capacity: $D/C = t_w/t$ D/C = 0.89 Weld Good

Vertical Post Weld to Chord

(Weld Bottom of Post All Around when D/C Above Right is > 1.0) Shear Demand at Weld: $f_v = f_p / A_w$ $f_v =$ **0.04** kip/in $V_w =$ Tension Demand at Weld: $f_v = M_p / S_w$ 12.24 ksi $P_w =$ 12.24 ksi $f_t =$ **1.47** kip/in End Reaction: $R_p = 0.02F$ Weld Thickness Required: $t_w = f_p / V_w + f_t / P_w$ $R_p = 1.22 \text{ kip}$ $t_w =$ **0.123** in A_w of Weld: $A_w = 4b$ $A_w = 16.00$ in Min Post/Chord Thickness = 0.188 in S_w of Weld: $S_w = bd + d^2/3$ $S_w = 21.33 \text{ in}^2$ Demand/Capacity: $D/C = t_w/t_{min}$ 0.66 Weld All Around D/C =

_ ,			5
Topper Industries		Project: 5x80 Gangway Dana Pt	
		Job#:8115Engineer:BG	
		<u>Date:</u> November-22	
A 1	ninum Canaway I	Jasian Diagonal Dasian	
Alun		Design - Diagonal Design Ilt) Weld Stress	
		1 Table J.2.2)	
	ess: $V_{uw} = 0.6*0.85 * F_{tuw}$	Nominal (Ult) Tension Stress: $P_{uw} = 0.6 * 0.85$	* F _{tuw}
V_{uv}	_w = 12.24 ksi	P _{uw} 12.24 ksi	
		<u>Diagonal</u> 4x0.188 Diagonals	
b(in) d(in)	t(in) A(in ²)	$S_{v}(in^{3})$ $I_{v}(in^{4})$ $r_{v}(in)$	
4 4	0.188 2.87	3.48 6.96 1.56	
Diagonal Comp		Flat Elements Direct Strength Method: Sec. B.	5.5.5
Chord K Factor: k	$\zeta = 1$	-	
Panel Length: L _{pa}		Elastic Buckling Stress: $MIN(F_N, F_e = (\pi^2 E/E_i))$	/(1.6b/t) ²
Gangway Span at Diag	$g_{\cdot} = \frac{80}{100}$ ft	$F_e = 25.67$ ksi	
Angle of Diagon	nal: $\varphi = arctan(h/L_{pan})$	$\lambda_{eg} = \pi (E/F_e)^{1/2} \qquad \lambda_{eg} = 62.31$	
	$\phi = \frac{41.46}{41.46} \text{ degrees}$	eq eq et	
Length of Diagon		$\lambda_{eq} = 31.8 \text{for} \lambda < 21.$ $\lambda_{eq} = 40.5 - 0.403\lambda \text{for} 21.5 < 1000$.5
	$_{\rm ag} = 80.06$ in		
Reaction at Diagonal: F		$\lambda_{eq} = 1016/\lambda \text{for} \lambda \ge 50$	
Compression in Diagon	R = 13.3087 kips nal: $C_{tra} = R/sin \phi$	Non-Weld Affected: $Fds = 16.30$ ksi	
	$a_{ag} = 20.10$ kips		
Diagonal Actual Stre	ess: $f_a = C_{diag} / A$	Allowable Compression Stress:	
	f _a = 7.00 ksi	$Min(F_{n}, F_{N}, F_{ds})$)
		Diagonal Allowable Stress = 16.30 ksi	
Compression In Co	olumns: Sec. E.2		
		Demand/Capacity: $D/C = f_a/F_{pw}$	~
$\lambda = KL_{diag}/r$	$\lambda 51.32$ 9.1 for $\lambda \leq 17.8$	D/C = 0.4 Section	on Goo
$F_{\rm w} = 0.00047\lambda^2 - 0.232\lambda + 2.000047\lambda^2$			
$F_n = 0.0004 / \Lambda - 0.232 \Lambda + 2.0004 / \Lambda$			
Non-Weld Affected: F_1		Diagonal Weld Design	
Compression In Column	<u>Elements: Sec. B.J.4.2</u>	Weld All Around Diagonal? Yes	
$\lambda = b/t$	$\lambda = 21.28$	Length of Weld Provided: $L_w = 2^* d/\sin \varphi + 2$	*b
$F_n = 2$	1.2 for $\lambda < 20.8$	$L_w = 20.08 \text{ in}$ Weld Area Provided: $A_{wprov} = 2*0.8*t$	*1
$F_n = 27.3 - 0.29$		weld Alea Plovided. $A_{wprov} = 2.0.8 \text{ f}$ $A_{wprov} = 5.339 \text{ in}^2$	L_W
$F_n = 27.3 - 0.29$ $F_n = 580$		Weld Area Required:	
Non-Weld Affected: F		$A_{wreq} = (R_n/P_{uw} + R_n/tan(\phi) * V_{uw}) *$	Ω
		$A_{wreq} = 4.521 \text{ in}^2$	
		$D/C = A_{wpor}/A_{wreq} = 0.8$ Weld	d Good

Topper In	dustries				Project: Job#: Engineer: Date:	5x80 Ga Nov	ngway I 8115 BG vember-	
A	luminum	Gang	way Desi	gn - Dia	igonal D	esign Con	tinue	<u>ed</u>
			<u>3rd</u>	<u>Diagonal</u>	<u>/</u>			
		Use		4x4x0.125		Diagonals		
b (in) 4	d (in) 4	t (in) 0.125	A (in ²) 1.94		$S_y(in^3)$ 2.43	I _y (in ⁴) 4.85	r _y (in) 1.58	
<u>Diag</u>	onal Compres	ssion C	<u>heck</u>	<u>F</u>	lat Elements	Direct Strength N	lethod:	Sec. B.5.5.5
Cho	rd K Factor: K =		1		Elastic B	Suckling Stress: M	$MN(F_N,F)$	$T_e = (\pi^2 E / (1.6b/t)^2)$
	el Length: L _{pan} =		<mark>0</mark> in			$F_e =$	25.5	l ksi
Gangway	Span at Diag. =	6	<mark>0</mark> ft	,	$(-1-)^{1/2}$			
An	gle of Diagonal:	a = arct	an(h/I)	λ _{eq} -	$= \pi (E/F_e)^{1/2}$	$\lambda_{eq} =$	62.5	l
	φ =		6 degrees			$\lambda_{eq} = 31.8$	for	λ < 21.5
Len	gth of Diagonal:		e		λ	•	for	21.5 < λ < 50
	$L_{diag} =$					$\lambda_{eq} = 1016/\lambda$	for	λ ≥ 50
Reaction	at Diagonal: R =		$v_L L + P_{DL})$		Non-Weld A	Affected: Fds =	16.2	5 ksi
_		10.031	-					
Compress	ion in Diagonal:	0						
	$C_{diag} =$	15.1	s kips		4110	wable Compressi	on Strac	
Diagon	al Actual Stress:	f = C	<i>\A</i>		<u>A110</u>	-		Ξ <u>.</u> F _N , F _{ds})
Diagon	$f_a =$		^g //1 1 ksi	1	Diagonal Alle	owable Stress =	16.2	
	I_a –	7.0	1 K31	I	Diagonal And	Swable Stress –	10.2.	J K51
Com	pression In Colu	mns: Sec	. <i>E.2</i>		Der	nand/Capacity: L	$D/C = f_a$	F_{mw}
								5 Section Goo
	$\lambda = KL_{diag} / r$ λ	50.6	7					
					<u>Di</u>	iagonal Weld I	Design	
$F_n = 0.000472$	λ^2 -0.232S λ +25.2		$\lambda < 66$					
	$F_n = 51352/\lambda^2$		$\lambda \geq 66$		Weld All Arc	ound Diagonal?	Yes	
Non-Wel	d Affected: $F_N =$	25.5	1 ksi					
<i>a</i> .					Length of	Weld Provided: L		
<u>Compressio</u>	on In Column Ele	ements: S	ес. Б.Э.4.2		Weld	$L_w =$ Area Provided: A		
	$\lambda = b/t$ λ	= 32.0	0			Area Required: $A_{wprov} =$	wprov – 2 4.01'	
	$F_n = 21.2$	for	λ < 20.8			$A_{wreg} = (R_n / P_{uw} +$	R _n /tan(e	$(\rho) * V_{uw}) * \Omega$
]	$F_n = 27.3 - 0.291 \lambda$		20.8 < λ < 33			$A_{wreq} =$		
	$F_n = 580/\lambda$		λ ≥ 33			wicq		
	11							

 $D/C = A_{wpor}/A_{wreq} =$ 0.85 Weld Good

6

17.99 ksi

Non-Weld Affected: $F_n =$

7

<u> Aluminum Gangway Design - Diagonal Design Continued</u>

		<u>5th</u>	<u>Diagonal</u>				
	Use		4x4x0.125	I	Diagonals		
b (in) d (in) 4 4	t (in) 0.125	A (in ²) 1.94		$S_{y}(in^{3})$ 2.43	$I_y(in^4)$ 4.85	r _y (in) 1.58	
<u>Diagonal Compre</u>	ssion Ch	<u>ieck</u>	<u>Fla</u>	t Elements D	Direct Strength 1	Method: S	ec. B.5.5.5
Chord K Factor: K = Panel Length: L _{pan} = Gangway Span at Diag. =	= 60	in ft		Elastic Bu	ckling Stress: <i>I</i> F _e =	MIN (F _N ,F _e 25.51	
			$\lambda_{eq} = \lambda_{eq}$	π(E/F _e) ^{1/2}	$\lambda_{eq} =$	62.51	
Reaction at Diagonal: R = R = Compression in Diagonal	$= 41.46$ $: L_{diag} = h/sin$ $= 80.06$ $= R = 1/2(w)$ $= 6.75433$ $: C_{diag} = R/s$	$ \begin{array}{l} \phi \text{ degrees} \\ \phi \text{ in} \\ LL+P_{DL}) \\ \phi \text{ kips} \\ \phi \text{ sin } \phi \end{array} $]	- 1	$\lambda_{eq} = 31.8$ $= 40.5 - 0.403 \lambda$ $\lambda_{eq} = 1016 / \lambda$ ffected: Fds =	for	λ < 21.5 21.5 < λ < 50 λ ≥ 50 ksi
C _{diag} =	= 10.20	kıps		Allow	vable Compress	ion Stress	<u>.</u>
Diagonal Actual Stress	$: f_a = C_{diag}$	/A			- 1	Min(F _n , F	_N , F _{ds})
$f_a =$	= 5.26	ksi	Di	agonal Allov	wable Stress =	16.25	ksi
$\frac{Compression \ In \ Colu}{\lambda = KL_{diag} \ /r}$				Dem	and/Capacity: <i>I</i> D/C =		Section Good
Ŭ				_	Diagonal	Weld De	esign_
$F_n = 0.00047\lambda^2 - 0.232S\lambda + 25.2$ $F_n = 51352/\lambda^2$ Non-Weld Affected: $F_n = 51352/\lambda^2$	² for	$\lambda \geq 66$	W	eld All Arou	nd Diagonal?	No	
Compression In Column El				-	Veld Provided: $L_w =$ Let Provided: Z	12.08	in
$\lambda = b/t$ λ	= 32.00)			$A_{wprov} =$ trea Required:		-
$F_n = 21.2$	2 for	$\lambda < 20.8$		A	$I_{wreq} = (R_n / P_{uw} -$		
$F_n = 27.3 - 0.2917$	A for	$20.8 < \lambda < 33$			$A_{wreq} =$	2.294	in ²
$F_n = 580/2$	∧ for	$\lambda \geq 33$					
Non-Weld Affected: F _n =	= 17.99	ksi		D/C =	$A_{wpor}/A_{wreq} =$	0.95	Weld Good

Topper Industries			Project:	5x8	0 Gangway	8 Dana Pt
			<u>Job#:</u>		8115 DC	
			Engineer: Date:		BG November	-22
			<u>Dute:</u>			(Version 14.1 2-2-22
Alu	ıminum (Gangway Des	ign - Brid	ge Desi	<u>gn</u>	
		Bridge Mem	<u>ber</u>			
	Use	4x4x0.188	Br	idges		
b (in) t (in)	$A(in^2)$	$S_x(in^3)$	$I_x(in^4)$	r (in)	$I_v(in^4)$	d (in)
4 0.188	2.87	3.48	6.96	1.56	6.96	4
<u>Bridge Flexu</u>	ral Demand					
(Design Bridge membe	ers with fixed ends)				
Bridge Spacing: S =	5 ft					
Design Point Load: P = Total Line Load:		S	<u>Compress</u>	ion In Colun	nn Elements	<u>:: Sec. B.5.4.2</u>
$w_{btot} =$	575 pl	f	$\lambda =$	$b/t \qquad \lambda =$	21.28	
Dead Line Load:		f		$F_{w} = 9.1$	for	<i>λ</i> ≤ 28.2
w _{bdead} = Uniform Utility Load:	-	L	F =	$12.0-0.105\lambda$		$\frac{1}{28.2} < \lambda < 58$
w _{UL} =		f	I _W	$F_{\rm w} = 346/\lambda$		$\lambda \ge 58$
WUL	17 10	L	Weld At	ffected: $F_w = 540/7$		
Uniform Load Moment:	$M = \frac{1}{12} *(w_{bt})$	$w_{UL} + w_{UL} + w^2$		$F_n = 21.2$		$\lambda \leq 20.8$
M =			$F_n =$	27.3-0.291X		$20.8 < \lambda < 33$
Point Load Moment:	$M = \frac{1}{12} *(w_{UL} + w)$	$(DL) * w^2 + \frac{l}{8} * P * w$		$F_n = 580/\lambda$	for	$\lambda \geq 33$
M =	3.00 ki	p-in	Non-Weld A	ffected: $F_n =$	21.11	ksi
Max Bending Stress:						
$f_b =$	4.47 ks	i	Element Allov	vable Stress F _{pw} =		-A _w /A)+F _w (A _w /A) ksi
<u>Bridge Desi</u>	gn Input					
Perimeter of Section: A =	16 :		<u>r lat Eleme</u> i	ni Bending I	n Own Plan	<u>e: Sec. B.5.5.1</u>
Weld Affected Perim.: $A_w =$				b =	- 1	in
Unbraced Length: $L_b =$			λ =	:b/t λ =		
-				F 12 (C C	
				$F_{\rm w} = 13.6$		λ<36.2
			$F_w =$	$16.0-0.065\lambda$		<i>36.2<λ<123</i> λ≥ <i>123</i>
			Weld At	$F_w = 982/\lambda$ ffected: $F_w =$		
			weiu Al	F = 31.8		κsi λ<33.1
			$\mathbf{F} =$	F = 31.8 40.5-0.262 λ		$\lambda < 33.1$ 33.1< $\lambda < 77$
			1	$F = 1563/\lambda$		$\lambda \ge 77$
			Non-Weld A			

Allowable Stress: $F_{pw} = F_n - (A_w/A)(F_n - F_w)$ $F_{pw} =$ **18.15** ksi

<u>Aluminum Gangway Design - Bridge Design</u>

Allowable Tension In Beams: Sec D.2b

Weld Affected Tension: $F_w =$ 9.10 ksi Non-Weld Affect Tens.: $F_n =$ 19.50 ksi

Allowable Tension Stress: $F_{pw} = F_n - (A_w/A)(F_n - F_w)$ $F_{pw} = 11.70$ ksi

Allowable Bending Stress:

Allow Bending Stress: $F_{pw} =$ 11.7 ksi

Demand/Capacity: $D/C = f_a/F_{pw}$ D/C = **0.38** Section Good

(Weld All Around Bridge to Chord When D/C to Right is > 1.0)

Aw of Weld = 2*b+2*dAw = 16 in Sw of Weld = $b*d+d^2/3$ Sw = 21.3 in²

Shear Demand at Weld: fv = 0.09 kip/inTension Demand at Weld: ft = 0.73 kip/in

Weld Thickness Required:

 $t_w = 0.13$ in

Min Bridge/Chord Thickness = 0.188 in

Demand/Capacity: $D/C = t_w/t$ D/C = 0.70 Weld All Around

Bridge Weld Design

 $V_{\rm w} = V_{\rm uw} / \Omega$ $V_{\rm w} =$ 6.28 ksi $P_{\rm w} =$ 6.28 ksi

Uniform Load End Reaction: $R_b = 1/2w_{tot} w$ $R_b = 1461.05$ lb

Point Load End Reaction: $R_b = 1/2w_{bdead} w + P$ $R_b = 587.50$ lb

(Weld Top and Bottom of Bridge to Chord)

 $A_{w} \text{ of Weld: } A_{w} = 2b$ $A_{w} = 8.00 \text{ in}$ $S_{w} \text{ of Weld: } S_{w} = bd$ $S_{w} = 16.00 \text{ in}^{2}$

Shear Demand at Weld: $f_v = R_b/A_w$ $f_v = 0.18$ kip/in Tension Demand at Weld: $f_t = M/S_w$ $f_t = 0.97$ kip/in

Weld Thickness Required: $t_w = f_v / V_w + f_t / P_w$

 $t_w = 0.184$ in

Min Bridge/Chord Thickness = 0.188 in

Demand/Capacity: $D/C = t_w/t$ D/C = 0.98 Weld Good