STRUCTURAL CALCULATIONS FOR

W12 GATES

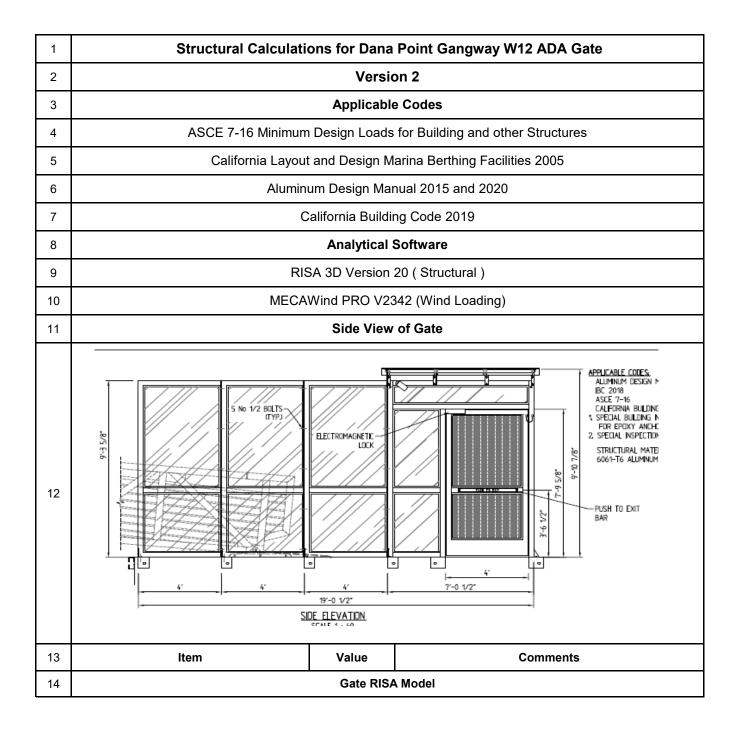
Revision: 7

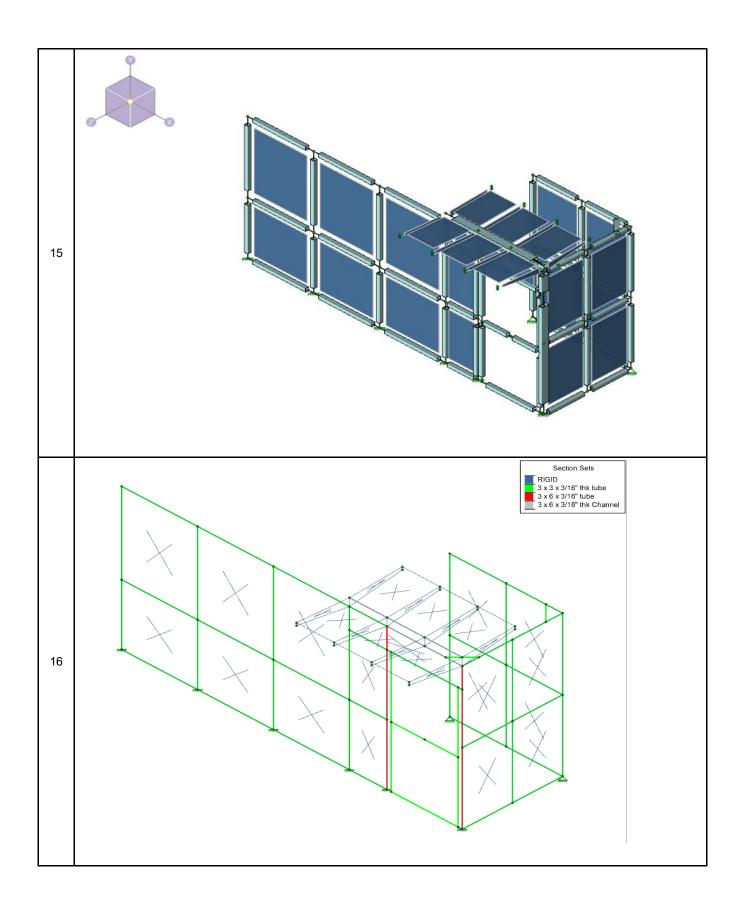
Permits: BNR21-0604.R7

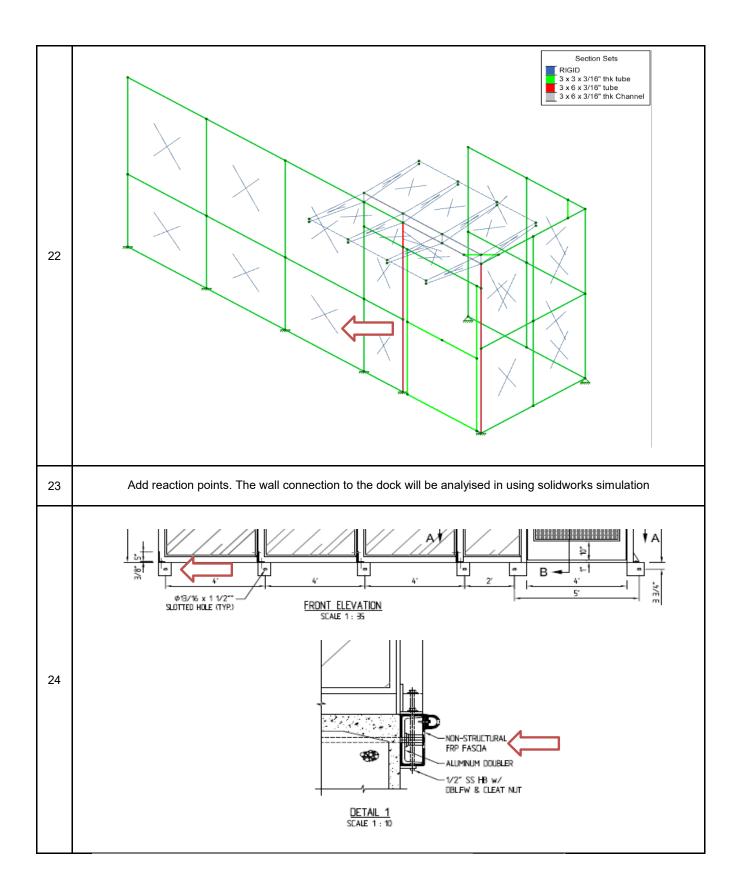
AT DANA POINT MARINA

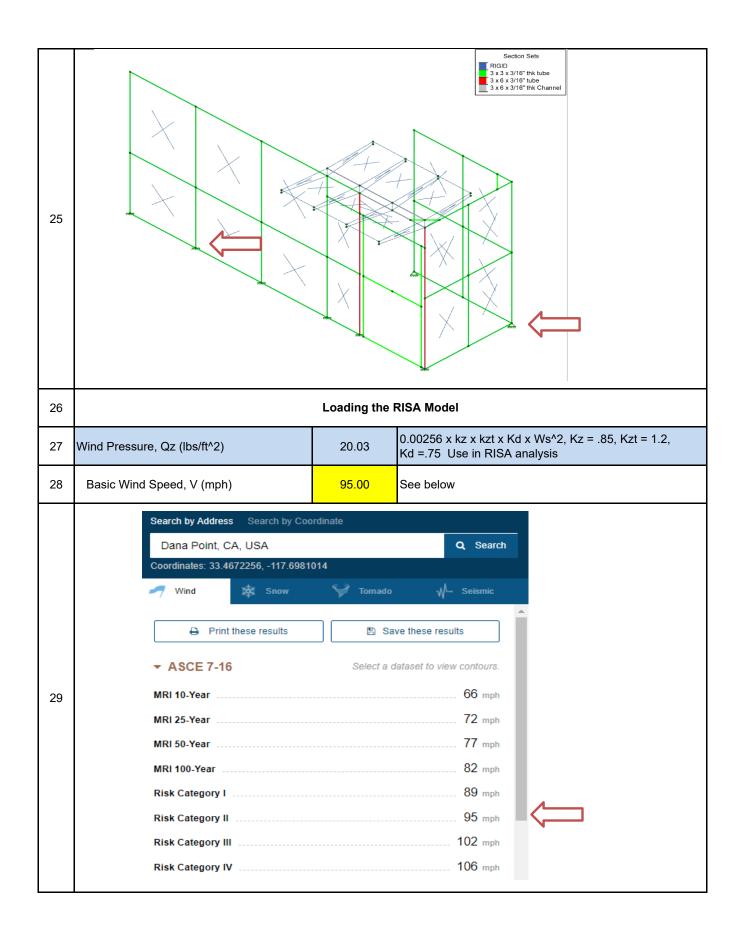
County of Orange - OC Public Works OC Development Services APPROVED
This set of plans and specifications must be kept on the job at all times. It is unlawful to make any changes or alterations to these plans without written permission from OC Public Works, OC Development Services of Orange County. The stamping of these plan specifications SHALL NOT be held to permit or be an approval of the violation of any provisions of any County. Ordinance or State law.

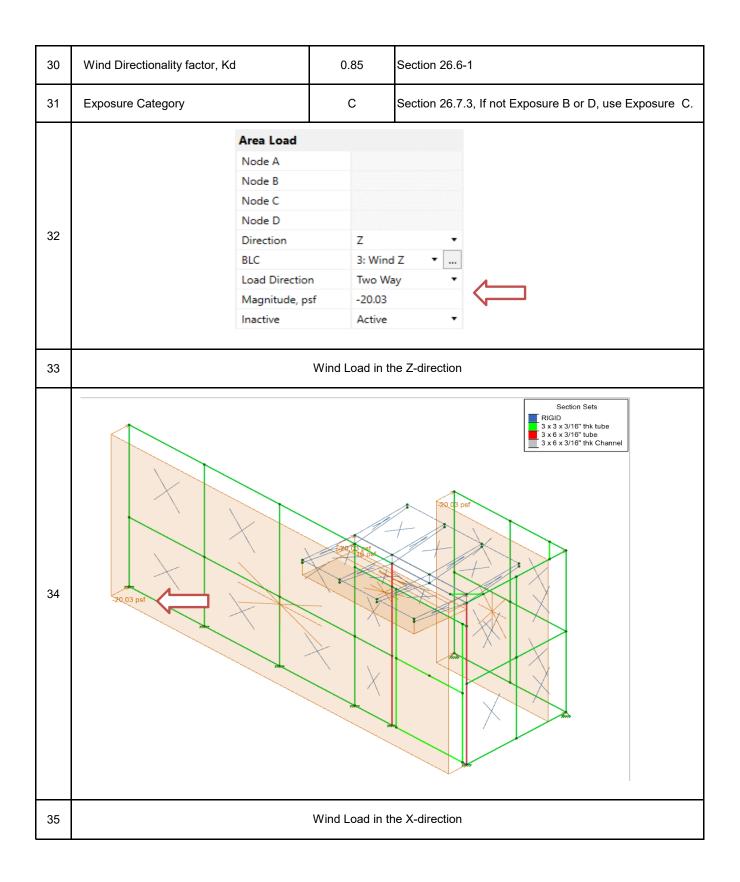
February 08, 2023

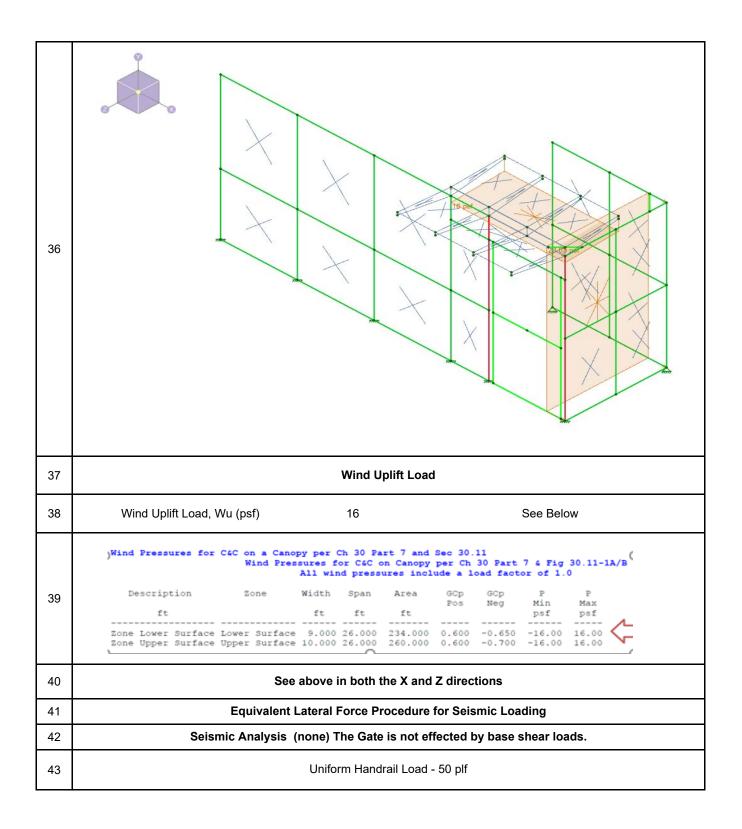

Prepared By:

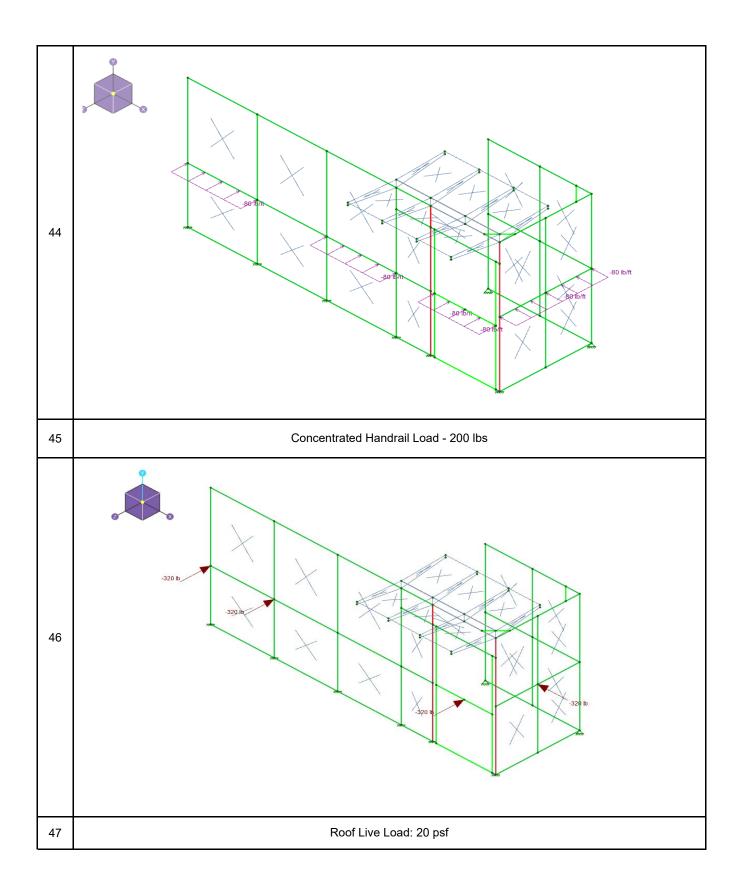

Grantham Engineering, Inc. 7807 Hillandale Drive San Diego, CA 92120 (619) 994-0748

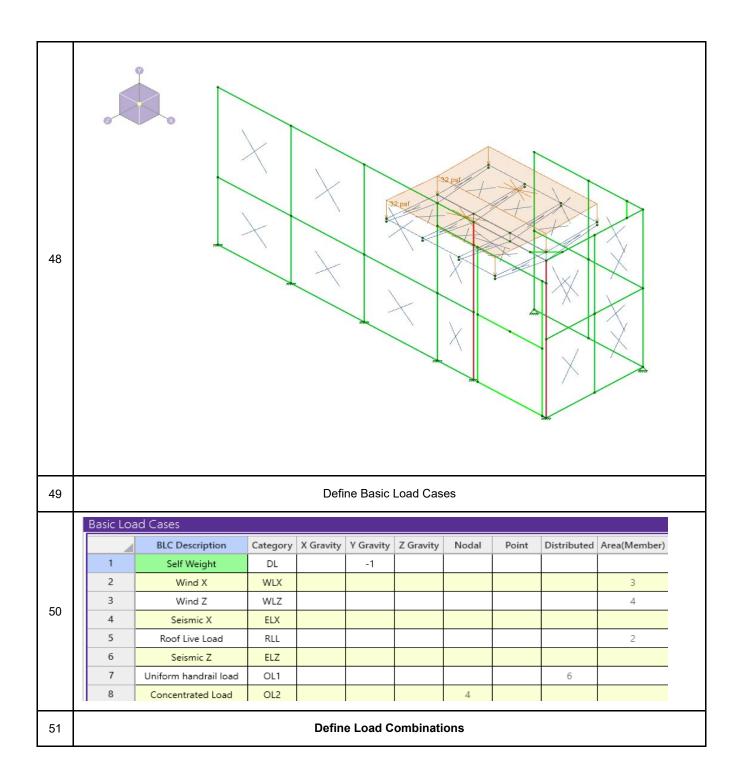

Civil • Mechanical • Marine

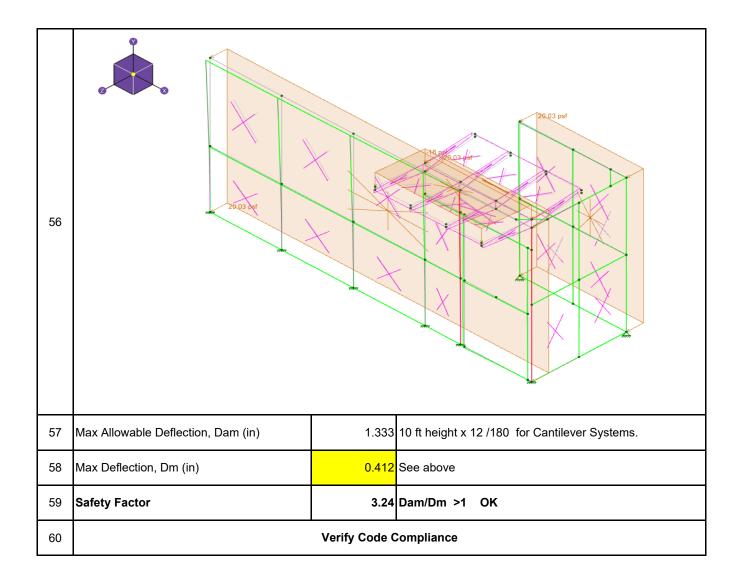


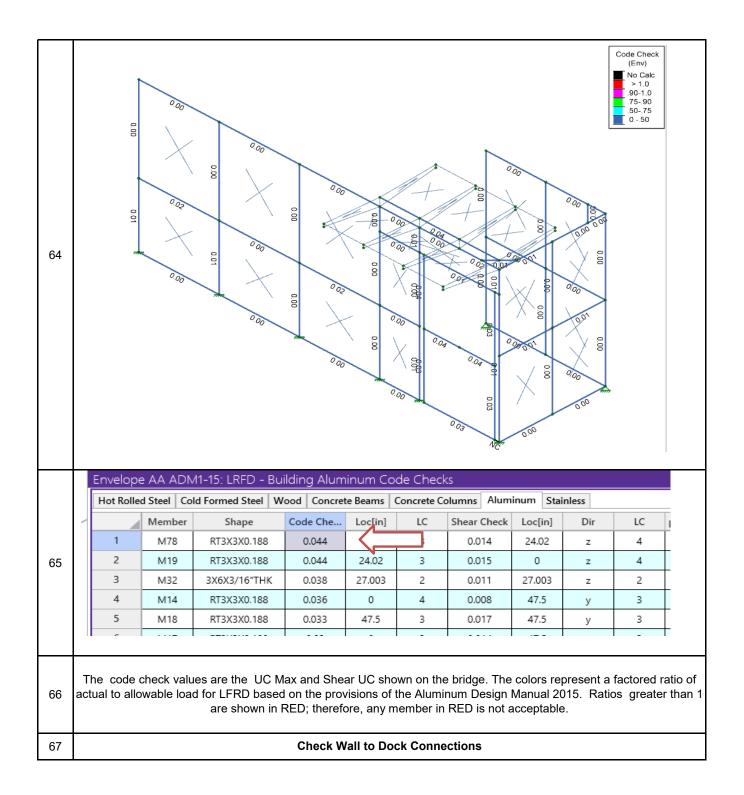


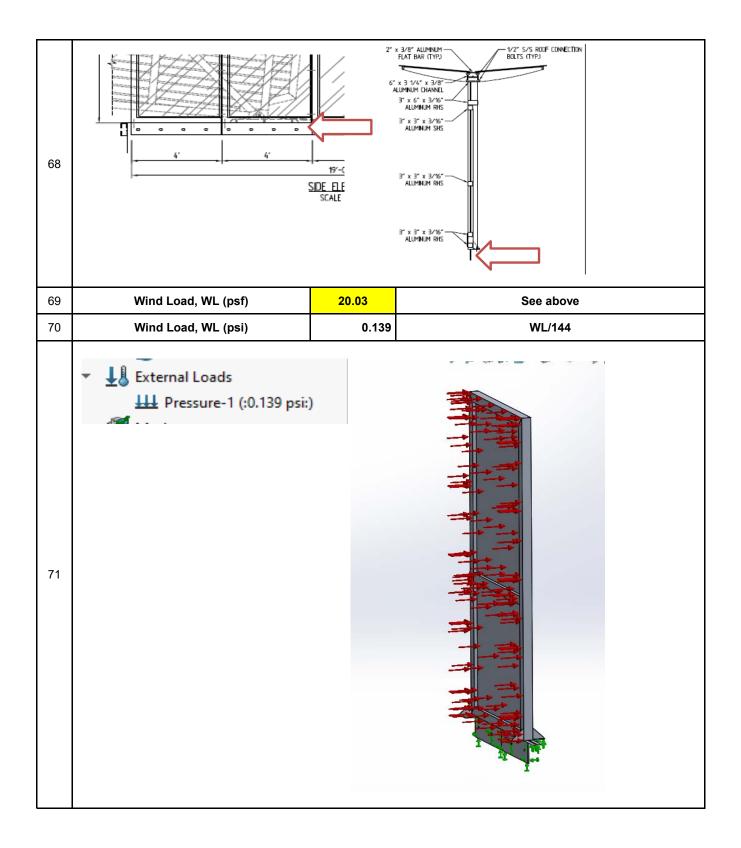



	Aluminu	um Section Se	ets								
	Hot Rolle	ed Cold Formed	Wood	Concrete	Aluminum	Stainless	General				
	Label				Shape		Туре	Desig	ın List	Material	
17	1	1 3 x 3 x 3/16" thk tube			RT3X3X0.	188	None	No	one 6	5061-T6 ~	
	2				RT3X6X0.	188	None	No	one	6061-T6	
	3	3 x 6 x 3/16"	thk Chanr	iel	3X6X3/16"	тнк	None	No	one	6061-T6	
	4	Door	Frame		RT2X2X0.	125	None	No	one	6061-T6	
18	The Se	ction Sets defir	ne the ma	ijor struct	ural compo	onents of th	ne Model mate	ch the pa	arts list def	ined on the dra	wing
19				Тн		ools aro m	odel as plates				
19					e glass pai	leis are m	odel as plates	5			
	General	Materials Proper	ties						, ,	=	
		d Cold Formed W		te Masonn	Aluminum	Stainless Ge	neral				
		Label	E [ksi]		G [ksi]	Nu	Therm. Coeff. [[1e⁵°F⁻¹]	Density [k/ft ³	³] Plate Methodo	
	1	gen_Conc3NW	3155		1372	0.15	0.6		0.145	Isotropic	
	2	gen_Conc4NW	3644		1584	0.15	0.6		0.145	Isotropic	
20	3	gen_Conc3LW	2085		906	0.15	0.6		0.11	Isotropic	1
	4	gen_Conc4LW	2408		1047	0.15	0.6		0.11	Isotropic	
	5	gen_Alum	10600		4077	0.3	1.29		0.173	Isotropic	1
	6	gen_Steel	29000		11154	0.3	0.65		0.49	Isotropic	
	7	RIGID	1e+6			0.3	0		0	Isotropic]
	8	Glass	1e+6			0.3	0		0.175	ppic	
21		Material S Thicknes	tes Mod Set Glass s .375 ase Code y Fixed		in in Fixed	Quad Su Plate Labe Joint Label Release Co Fully Fixed	Prefix N de D Releas	e Code Tixed			





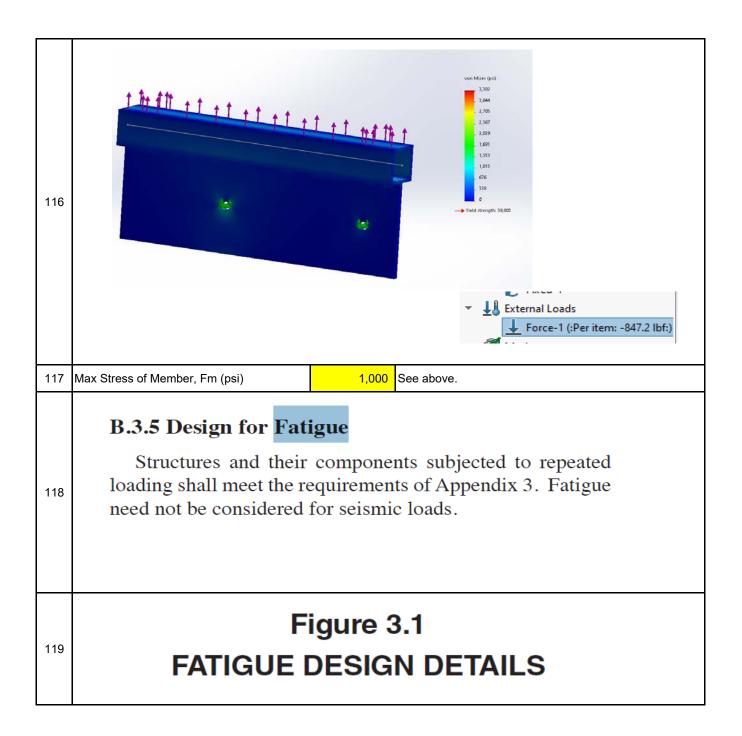


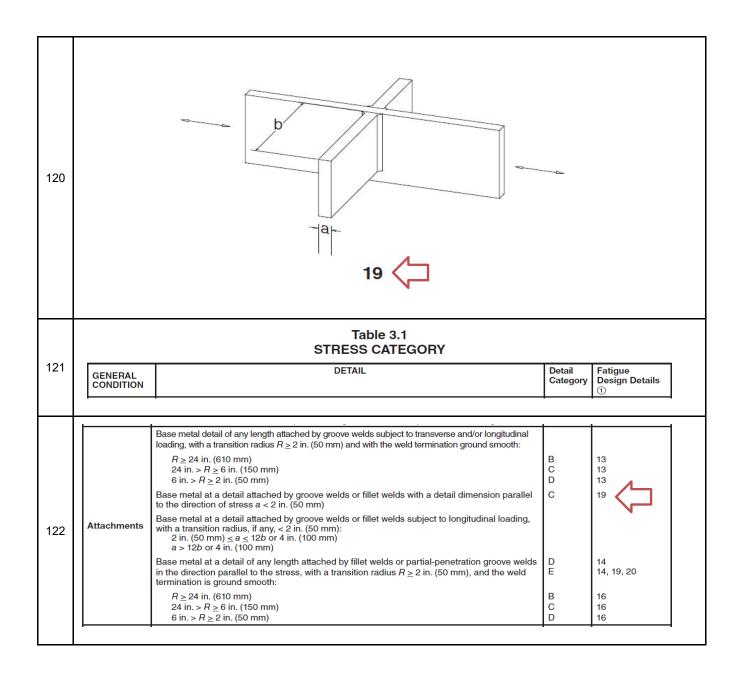


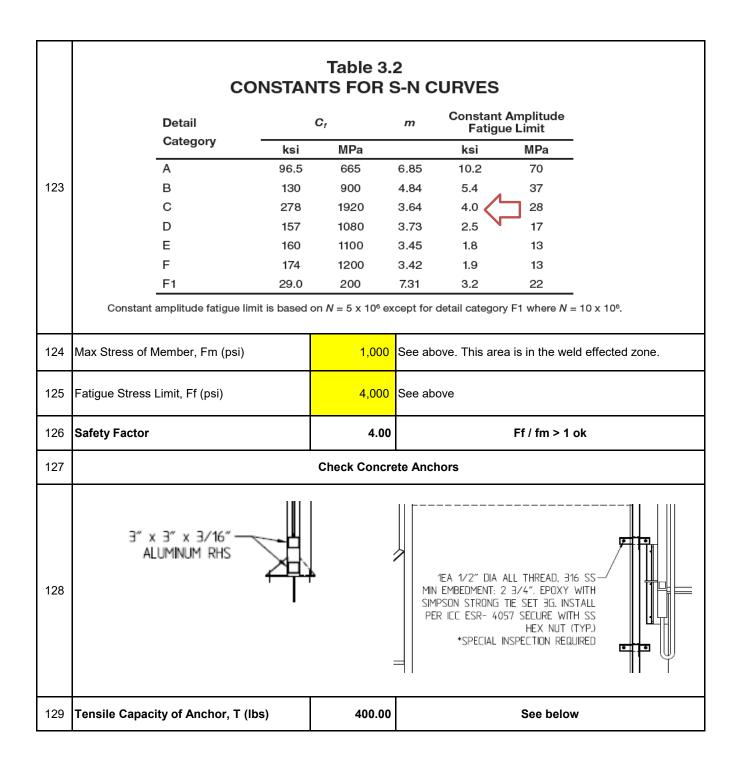
		Load	Combina	ations								
	Combinations Design											
		LC	Generato	r F	SA Scalin	g Factor						
				Descriptio	on	Solve	P-Delta	SRSS	BLC	Facto	or BLC	Factor
		1		Dead Loa	d	~	Y		DL	1		
		2		Roof Loa	d	✓	Y		DL	1.2	RLL	1.6
52		3	Conce	ntrated ha	ndrail I	✓	Y		DL	1.2	OL2	1.6
52		4	han	drail unifor	m load	✓	Y		DL	1.2	OL1	1.6
		5		Wind Dow	n X	✓	Y		DL	1.2	WLX	1
		6		Wind Up	х	✓	Y		DL	0.9	WLX	1
	7			Wind Dow	n Z	✓	Y		DL	1.2	WLZ	1
		8		Wind Down -Z		✓	Y		DL	0.9	WLZ	-1
		9		Wind Up	Z	✓	Y		DL	0.9	WLZ	1
		10		Wind Up -Z		✓	Y		DL	0.9	WLZ	-1
53						De	eflection A	nalysis				
54				Run	all the Loa	ad Combin	ations to d	etermine	the larges	t deflectio	n	
	Env	velope	Node Dis	placemer	nts							
			Node Label		X [in]	LC	Y [in]	LC	Z [in]	LC	X Rotation [rad]	LC
		1	N97	max	0	10	0	10	0.412	10	-3	10
55		2		min	0	9	0	7	-0.412	7	-5.626e-3	7
55		3	N93	max	0	10	0	10	0.396	10	5.02e-3	10
		4		min	0	9	0	7	-0.396	7	-5.021e-3	7
					1	•		'	. 1	I		. 1

	-	Model Settings			? ×			
		Solution Axis	Codes Concre					
		Hot Rolled Steel:	AISC 14th (360-10): LRFD		•			
			Stiffness Adjustment: No 🔹					
		Seismic Detailing:	AISC 341-10 and AISC 358	-10	Ŧ			
		Connections:	AISC 14th (360-10): ASD		-			
61		Cold Formed Steel:	AISI S100-12: ASD 🔹					
		CFS Walls:	None 🔻					
			Stiffness Adjustme	-				
		Wood:	AWC NDS-12: ASD	•				
			Temperatur	-				
		Concrete:	ACI 318-11		•			
		Masonry:	ACI 530-13: ASD		•			
		Aluminum:	AA ADM1-15: LRFD					
		1		ſ				
62			Strength An	alysis				
63			Run the all Load C	ombinations				

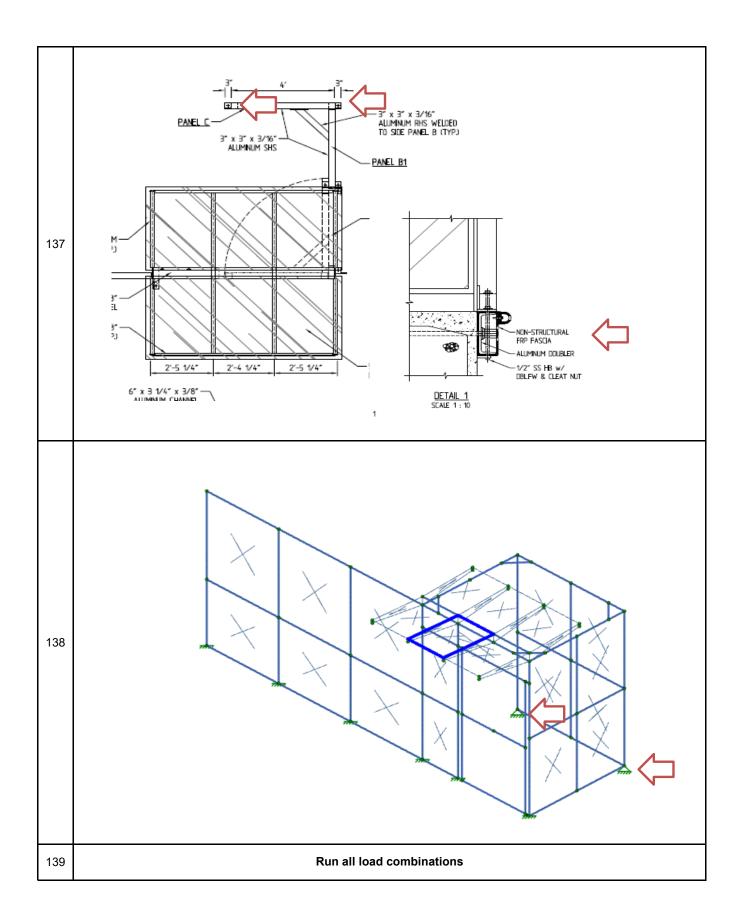
72	wr Mises (p.i) 1,507 1,078					
73	Max Stress of Member, Fm (psi)	6,000	See above. This area is in the weld effected zone.			
74	Yield Stress of Material, Fy (psi)	11,250.00	See below. 15,000 (Welded affected Zone Area) x 0.75 (strength reduction factor).			
75	Design of Aluminum Structure Design of member in Tension Strength reduction factor and safety factor LRFD design: Strength reduction factors-building type structures $\phi = 0.75$ for tensile rupture $\phi = 0.75$ for tensile yielding					
76	Safety Factor	1.88	Fy/Fm > 1 OK			
77	Ch	eck Nylon Rod	Shear Capacity			

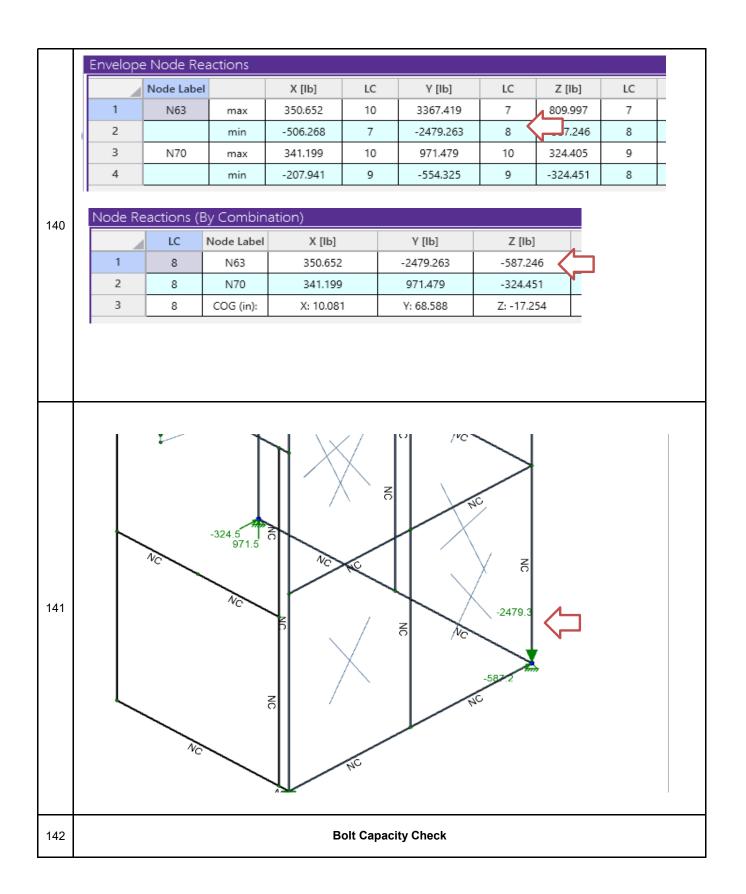

78	~											
	Envelop	e Node Rea	actions									
		Node Label		X [lb]	LC	Y [lb]	LC	Z [lb]	LC	MX [lb-ft]	LC	MY [lb-ft]
	1	N91	max	183.912	7	512.353	7	954.078	7	3539.608	7	13
79	2	N87	min	-183.859	8	59.514	8	-953.984	8	-3539.006	8	-45.278
	4	1107	max min	-116.511	8	667.251 243.581	6	783.867 -783.718	8	2949.145 -2948.301	8	95.673
80	Moment	Load on \	Vall, ML	(ft-lbs)	·	3,539.00		,		See above		
81												
82	Distance Panel, D		sset Edç	e to cente	r of	5.00				10in / 2		
83	Shear Lo	oad on Ny	lon Rod	s, T (lbs)		8,493.60			Ν	/IL / (D/12)		
84	Diamer of Rods, Dr (in)					0.75						

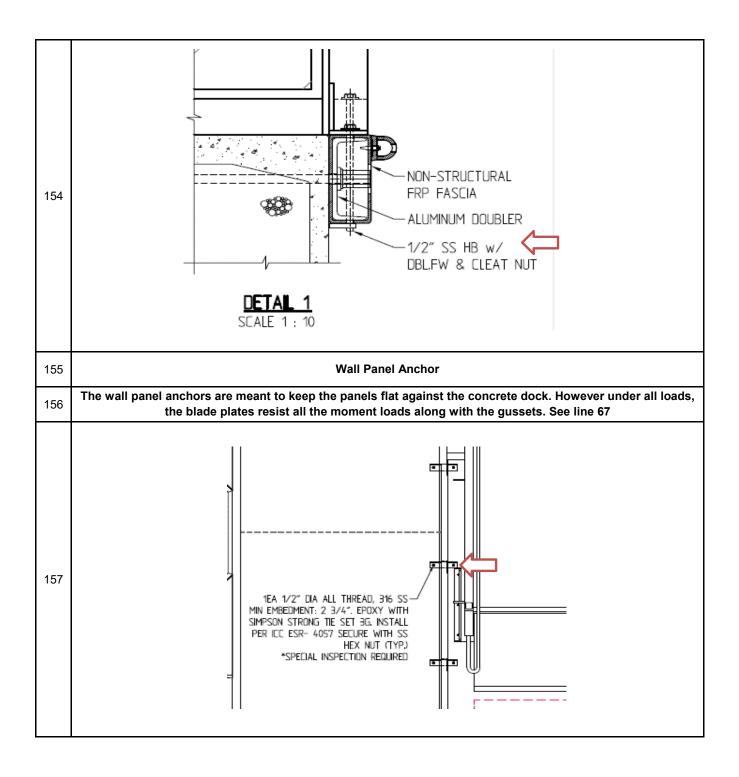

85	Cross Sectional Area of Rods, Ar (in^2)	0.44	.25 X 3.141 X Dr^2
86	Number of Rods, N	2.00	
87	Shear Stress per Rod, Vr (Ibs)	4,807.30	T / Ar / N/ 2 faces (double shear)
88	Shear Capacity of Nylon, Vc (psi)	7,200.00	9600 psi x 0.75 (resistance factor)
89	Nylon 6/6 Mechanical Properties (73o F / TENSILE STRENGTH ELONGATION SHEAR STRENGTH FLEXUARAL MODULUS IMPACT STRENGTH HARDNESS SPECIFIC GRAVITY MELTING POINT DIELECTRIC STRENGTH UNDERWRITERS LABORATORY RATING	230 C) 230 C) 200 C 200 C	60% 60% 9,600 PSI. 66.2 MPA 410,000 PSI. 2.,287 MPA 1.0 FT/LB/IN 5.5 KG/CM2 R121 M79 1.13 1.13 500 F 2600 C 600 V/MIL 10 OHM-CM
90	Safety Factor	1.50	See above
91	Check W	all Stress betwe	en Blade and Tubing
92	0 0	•	

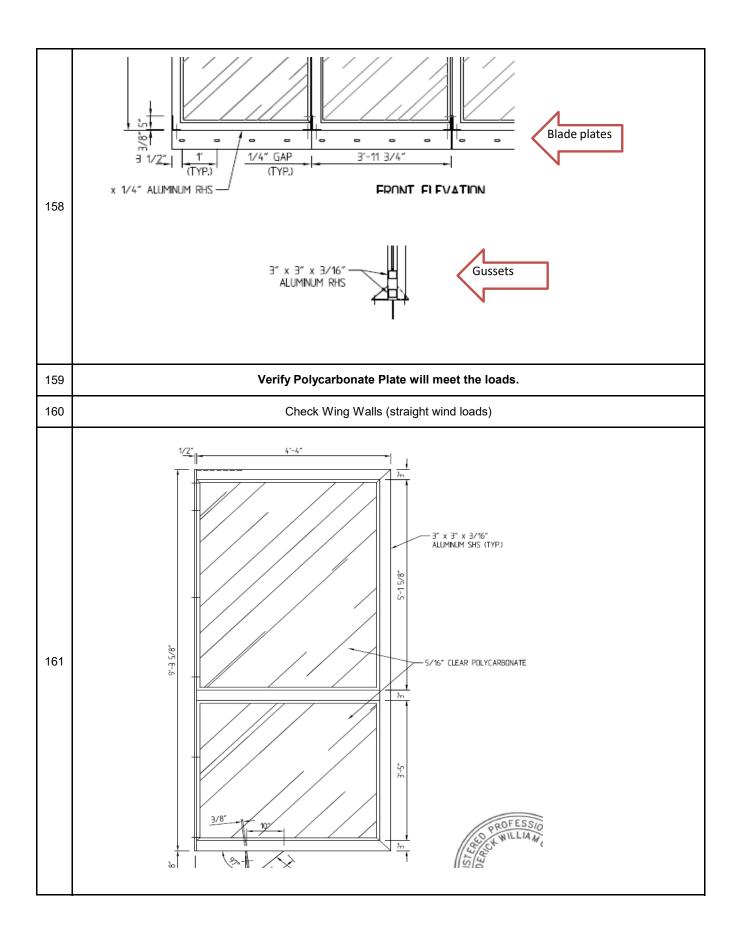

93			16,091 13,561 10,171 6,701 3,399 2 → Vield strength: 39,005			
94	Max Stress of Member, Fm (psi)	6,500	See above. This area is in the weld effected zone.			
95	Yield Stress of Material, Fy (psi)	11,250.00	See below. 15,000 (Welded affected Zone Area) x 0.75 (strength reduction factor).			
96	Design of Aluminum StructureDesign of member in TensionStrength reduction factor and safety factorLRFD design:Strength reduction factors-building type structures $\phi = 0.75$ for tensile rupture $\phi = 0.75$ for tensile rupture $\phi = 0.75$ for tensile yielding					
97	Safety Factor	1.73	Fy/Fm > 1 OK			
98	Shear Load, V (Ibs)	954.00	See above			
99	Detern	nine Fatigue Str	ress on Connection			
100	Wind Load at 25 mph (psf)	2.00				

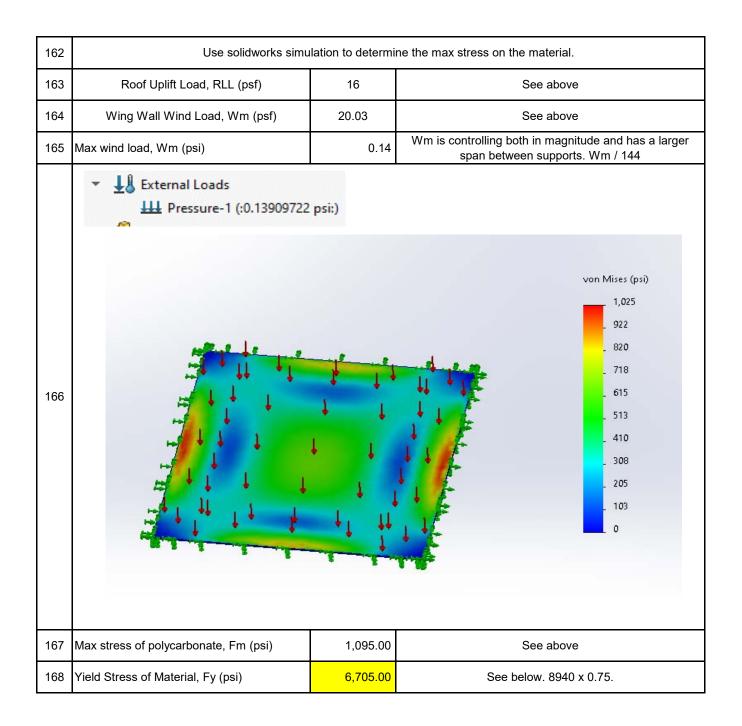
101		8						Jun
102	Node Reactions (LC 1 7 2 7 3 7	By Combina Node Label N91 N87 N27	x [Ib] 25.086 19.363 2.987	Y [lb] 354.913 368.642 295.461	Z [lb] 95.249 78.288 59.16	MX [lb-ft] 353.368 294.45 189.072	MY [lb-ft] 4.521 9.543 12.912	MZ [lb-ft] 0.073 -0.059 -3.556
103	Moment Load on	Wall, ML (1	ft-lbs)	353.00		See	above	
104								
105	Distance from Gu Panel, D (in)	isset Edge	to center of	5.00		10)in / 2	
106	Shear Load on Ny	ylon Rods,	T (lbs)	847.20		ML	/ (D/12)	
100			· · ·		MIL / (D/12)			
	Diamer of Rods, I		. ,	0.75				


109	Number of Rods, N	2.00			
110	Shear Stress per Rod, Vr (Ibs)	Stress per Rod, Vr (lbs) 479.51 T / Ar / N/ 2 faces (double			
111	Shear Capacity of Nylon, Vc (psi)	7,200.00	9600 ps	si x 0.75 (resistance factor)	
112	Nylon 6/6 Mechanical Properties (73o F / 23 TENSILE STRENGTH ELONGATION SHEAR STRENGTH FLEXUARAL MODULUS IMPACT STRENGTH HARDNESS SPECIFIC GRAVITY MELTING POINT DIELECTRIC STRENGTH UNDERWRITERS LABORATORY RATING	o C) D638 D638 D732 D790 D256 D785 D785 D789 D149 BUL. 94	12,000 PSI. 60% 9,600 PSI. 410,000 PSI. 1.0 FT/LB/IN R121 1.13 500 F 600 V/MIL 94V2	82.7 MPA 60% 2 MPA 2.287 MPA 5.5 KG/CM2 M79 1.13 2600 C 10 OHM-CM 94V2	
113	Safety Factor	15.02		See above	
114	Check Wa	III Stress betwee	n Blade and Tub	bing	
115		0	0		






130		S orth	Input DataDesign method: ACI 318-14Anchor: SET-3G w/ 1/2"Ø A193 Gr. B8/B8M (304/316SS)Effective Embedment depth: 2.750 inch Concrete: Normal-weight State: Cracked Compressive strength: 3000 psi Seismic design: NoImage: Seismic design: NoSeismic design: NoSeismic design: No			
131	Distance from bolt to opposite anchor plate, D (in)	9.00	See above			
132	Moment Capacity, M (ft-lbs)	300.00	T x D / 12			
133	Moment Load on Wall, ML (ft-lbs)	353.00	See above during a 25 mph constant wind load			
134	Proportional Support, P (%)	Proportional Support, P (%) 84.99 M / ML x 100				
135	These anchors help i	resist the 25 mpl	h wind loads but not much else.			
136		Other Waler Anchors				



		<u></u>				
143	Tensile Strength, Yield 215 M	<u>1Pa</u> 3'	1200 psi at 0.2% offset			
144	Nominal Tensile Strength of Fastener, Fnt (ksi)	31.20	See above			
145	Nominal Shear Strength of Fastener, Fnv (ksi)	18.00	.577 x Fnt			
146	Bolt Diameter, Db (in)	0.5	1/2"			
147	Cross Sectional Area of Bolt, Ab (in^2)	0.20	.25 x 3.141 x Db^2			
148	Tensile Strength of Bolt, Rnt (lbs)	4,593.71	Fnt x Ab x .75 (Resistance Factor) x 1000 (matches values in Table 7-2)			
149	Shear Strength of Bolt, Rnv (lbs)	2,650.57	Fnv x Ab x .75 (Resistance Factor) x 1000 (matches values in Table 7-1)			
150	Tensile Load on the single bolt, Tsb (lbs)	2,479.0	See above			
151	Shear Load on a single bolt, Vsb (lbs)	683.4	(350^2 + 587^2)^1/2			
152	Combined Tension and Shear in Bearing-Type Connections Tests have shown that the strength of bearing fasteners subject to combined shear and tension resulting from externally applied forces can be closely defined by an ellipse (Kulak and others, 1987). The relationship is expressed as $\left(\frac{f_t}{\phi F_{nt}}\right)^2 + \left(\frac{f_v}{\phi F_{nv}}\right)^2 = 1$ (LRFD) (C-J3-5a)					
153	Value needs to be less than 1	0.3577	See above formula <1 OK			

169	TUFFAK [®] GP sheets with thicknesses ranging between 0.030 to 0.060-inch-thick (0.76 to 1.5 mm) for wall and ceiling applications comply with the interior finish requirements of IBC Section 803.1. Select TUFFAK [®] GP,				
	Tensile Strength, Ultimate	4	ASTM D 638	psi	9,500
	Tensile Strength, Yield	A	ASTM D 638	psi	9,000
	Tensile Modulus	Å	ASTM D 638	psi	340,000
170	Safety Factor	6.12	Fy / Fm > 1 OK		
171	End of Analysis				